-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathdiff3d.py
270 lines (218 loc) · 9.44 KB
/
diff3d.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
# load files and display a window showing the diff
def from_files(path1, path2, title=None, **kwargs):
import pyvista
pyvista.global_theme.color = (0.70, 0.80, 1.0)
pyvista.global_theme.line_width = 3
pyvista.global_theme.point_size = 8
pyvista.global_theme.window_size = (1500, 1500)
if title is None:
title = (path1, path2) if path2 else path1
o1 = load(path1)
o2 = load(path2) if path2 else None
diff(o1, o2, title=title, **kwargs)
# display a window showing the diff between to pyvista objects
def diff(o1, o2, scheme="1", alpha=0.25, title="diff3d", align=False, width_pcts=None, **kwargs):
import pyvista
# for interoperability with other vtk-based libraries
# TODO: add more?
def convert(o):
if "vedo" in str(type(o)):
o = o.dataset
return o
# accept lists and tuples of objects
if isinstance(o1, (list,tuple)):
o1 = pyvista.MultiBlock([convert(o) for o in o1])
if isinstance(o2, (list,tuple)):
o2 = pyvista.MultiBlock([convert(o) for o in o2])
# align if requested
if align and o2 is not None:
print("aligning...", end="", flush=True)
dot = lambda _: print(".", end="", flush=True)
delta = align3d(o1, o2, dot, width_pcts=width_pcts)
print()
o2 = o2.translate(delta)
# get color scheme information
name1, name2, color1 = color_schemes[scheme]
# configure plotter
if isinstance(title, (list,tuple)):
title = f"{name1}: {title[0]} | {name2}: {title[1]}"
pl = pyvista.Plotter(title = title)
pl.enable_terrain_style(mouse_wheel_zooms=True, shift_pans=True)
# complementary colors
color2 = tuple(250 + min(color1) - c for c in color1)
# completely opaque doesn't work
alpha = min(alpha, 0.99)
# add the meshes
if o2:
a1 = pl.add_mesh(convert(o1), color=color1, opacity=alpha, **kwargs)
a2 = pl.add_mesh(convert(o2), color=color2, opacity=alpha, **kwargs)
else:
pl.add_mesh(o1)
# animate (flash) the colors when commanded
def animate():
import time
secs, hertz = 0.5, 8 # tune
frames_per_cycle = 2 # we're simply alternating
cs1 = [color1, color2]
cs2 = [color2, color1]
start = time.time()
def set_colors(i):
j = (i+1) % frames_per_cycle
a1.prop.color = cs1[j]
a2.prop.color = cs2[j]
frame_rate = hertz * frames_per_cycle
sleep_time = (start + i / frame_rate) - time.time()
#print(f"{i}, {time.time():.3f} sleep_time {sleep_time:.3f}")
if sleep_time > 0:
time.sleep(sleep_time)
frames = int(secs * hertz) * frames_per_cycle
pl.add_timer_event(frames, 0, set_colors)
# flash colors on press of "a" key
pl.add_key_event("a", animate)
pl.show()
# load a file from a given path and return a pyvista object
def load(path):
import pyvista
if path.endswith(".step") or path.endswith(".stp"):
try:
import build123d
except ModuleNotFoundError:
print("For STEP file support please install build123d")
exit()
step = build123d.importers.import_step(path)
points, faces = step.tessellate(tolerance=0.1)
points = [tuple(p) for p in points]
print(f"{len(points)} points, {len(faces)} faces")
return pyvista.PolyData.from_regular_faces(points, faces)
elif path.endswith(".3mf"):
import lib3mf
wrapper = lib3mf.Wrapper()
model = wrapper.CreateModel()
model.QueryReader("3mf").ReadFromFile(path)
blocks = pyvista.MultiBlock()
items = model.GetBuildItems()
while items.MoveNext():
item = items.GetCurrent()
res = item.GetObjectResource()
vertices = res.GetVertices()
triangles = res.GetTriangleIndices()
points = [v.Coordinates for v in vertices]
faces = [t.Indices for t in triangles]
blocks.append(pyvista.PolyData.from_regular_faces(points, faces))
merged = pyvista.merge(blocks)
return merged
else:
return pyvista.read(path)
# colorblind-friendly color schemes per https://davidmathlogic.com/colorblind
color_schemes = {
"1": ("green", "red", (0, 250, 0)),
"2": ("blue", "orange", (0, 100, 250)),
"3": ("purple", "yellow", (100, 75, 250)),
}
viz = None
dbg = False
# align two meshes by moving one
# returns the delta that can be used to translate moving to align it with stationary
def align3d(stationary, moving, callback=None, n=2000, width_pcts=None, tol_rel=1e-5):
import numpy as np
import scipy
# default value
width_pcts = (np.inf, 8, 2, 0.5) if width_pcts is None else width_pcts
# for each point find and return the closest point on a mesh to that point
# returned points are not necessarily mesh vertex points
def find_closest(mesh, points):
_, closest = mesh.find_closest_cell(points, return_closest_point=True)
return closest
# place approximately n sample points on amesh
def sample_points(mesh, n):
# compute a cell size based on area of mesh such that
# we get approximately n sample points on mesh
def area(face):
p1, p2, p3 = mesh.points[list(face)]
return np.linalg.norm(np.cross(p2-p1, p3-p1)) / 2
total_area = sum(area(face) for face in mesh.regular_faces)
cell_size = np.sqrt(total_area / n)
if dbg: print(f"cell size {cell_size}")
# construct a 3d grid with points spaced cell_size apart
xmin, xmax, ymin, ymax, zmin, zmax = mesh.bounds
xs = np.arange(xmin, xmax+cell_size, cell_size)
ys = np.arange(ymin, ymax+cell_size, cell_size)
zs = np.arange(zmin, zmax+cell_size, cell_size)
grid = np.array([(x,y,z) for x in xs for y in ys for z in zs])
if dbg: print(f"{len(grid)} grid points")
if viz: viz.show("mesh with 3d grid", mesh, grid)
# find the closest point on the mesh to each grid point
closest = find_closest(mesh, grid)
# filter the closest points to include only those near the grid point it came from
# sanity check: there should be no (or very few) duplicates
points = [p for p, g in zip(closest, grid) if np.max(np.abs(p-g)) <= cell_size/2]
if dbg: print(f"{len(points)} close points; {len(set(tuple(p) for p in points))} without duplicates")
if viz: viz.show("sample points", points) #viz.show(mesh.alpha(0.2), points)
return points, cell_size
# place approximately n sample points on the moving_points mesh
# this will give roughly equal weight to all parts of the mesh by area
# using the mesh vertex points might wildly over-weight areas of high detail
moving_points, cell_size = sample_points(moving, n)
if dbg: print(f"{len(moving_points)} sample points")
# compute distance squared for each point in moving points
# if we were to move moving_points by delta
def sqdists(delta):
points = moving_points + delta
closest = find_closest(stationary, points)
deltas = closest - points
sqdists = np.array([np.dot(d, d) for d in deltas])
if callback: callback(delta)
#if viz: viz.show(stationary, closest)
if dbg: print(f"delta: [{delta[0]:.3f} {delta[1]:.3f} {delta[2]:.3f}]")
return sqdists
# minimize total penalty for a given initial delta, tolerance, and width_pct
# width_pct is width of gaussian penalty function in percent of object size
# width_pct of inf means least squares
# "L-BFGS-B" minimization method had by far fewer goal function executions,
# which is important here because they are expensive
xmin, xmax, ymin, ymax, zmin, zmax = stationary.bounds
size = np.sqrt((xmax-xmin)**2 + (ymax-ymin)**2 + (zmax-zmin)**2)
def minimize(delta0, width_pct):
from scipy.optimize import minimize
if dbg: print(f"minimize pass, size {size:.1f}, tol_rel {tol_rel:.1g}, width_pct {width_pct:.2f}")
if width_pct == np.inf:
fun = lambda x: sum(sqdists(x))
else:
sqwidth = (size * width_pct / 100) ** 2
fun = lambda x: -sum(np.exp(-sqdists(x) / sqwidth))
result = minimize(fun, x0=delta0.tolist(), method="L-BFGS-B", tol=tol_rel*size)
nonlocal nfev
nfev += result.nfev
return result.x
# initial guess: align centroids
delta = np.average(stationary.points, axis=0) - np.average(moving.points, axis=0)
# do multiple minimization passes at different widths
nfev = 0
for width_pct in width_pcts:
delta = minimize(delta, width_pct)
if dbg: print(f"nfev: {nfev}")
# caller can translate moving by delta to align
return delta
def cli():
import argparse
parser = argparse.ArgumentParser(
prog = "diff3d",
description = "Visual diff for 3d files",
)
parser.add_argument("file1")
parser.add_argument("file2", nargs="?")
parser.add_argument("--align", "-a", action="store_true", help="Align models")
parser.add_argument(
"--scheme", "-s",
choices = color_schemes.keys(),
default = "1",
help = "Color scheme",
)
parser.add_argument("--widths", nargs="*", type=float)
args = parser.parse_args()
from_files(
args.file1, args.file2, scheme=args.scheme,
align=args.align, width_pcts=args.widths
)
if __name__ == "__main__":
cli()