-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathflim.py
216 lines (167 loc) · 6.29 KB
/
flim.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
"""
flim - Filmic Color Transform
Input Color Space: Linear BT.709 I-D65
Output Color Space: sRGB 2.2
Repo:
https://github.com/bean-mhm/flim
"""
import numpy as np
import colour
import joblib
from utils import *
# Use parallel processing?
parallel = True
# Print the current indices while processing? (slow)
print_indices = False
# Transform a 3D LUT
def apply_transform(table: np.ndarray, preset: dict):
if len(table.shape) != 4:
raise Exception('table must have 4 dimensions (3 for xyz, 1 for the color channels)')
if table.shape[3] != 3:
raise Exception('the fourth axis must have a size of 3 (RGB)')
# LUT Decompression: Map Range
table = colour.algebra.linear_conversion(
table,
np.array([0.0, 1.0]),
np.array([preset['lut_compress_log2_min'], preset['lut_compress_log2_max']])
)
# LUT Decompression: Exponent
colour.algebra.set_spow_enable(True)
table = np.power(2.0, table)
# LUT Decompression: Black Offset
offset = (2.0**preset['lut_compress_log2_min'])
table -= offset
# Eliminate negative values (useless)
table = np.maximum(table, 0.0)
# Pre-Exposure
table *= (2**preset['pre_exposure'])
# Gamut Extension Matrix (Linear BT.709)
extend_mat = flim_gamut_extension_mat(
preset['extended_gamut_red_scale'],
preset['extended_gamut_green_scale'],
preset['extended_gamut_blue_scale'],
preset['extended_gamut_red_rot'],
preset['extended_gamut_green_rot'],
preset['extended_gamut_blue_rot'],
preset['extended_gamut_red_mul'],
preset['extended_gamut_green_mul'],
preset['extended_gamut_blue_mul']
)
extend_mat_inv = np.linalg.inv(extend_mat)
# Backlight (extended gamut)
backlight_ext = np.matmul(extend_mat, preset['print_backlight'])
# Upper and lower limits in the print
big = 10_000_000.0
white_cap = negative_and_print(np.array([big, big, big]), preset, backlight_ext)
black_cap = negative_and_print(np.array([0, 0, 0]), preset, backlight_ext)
black_cap /= white_cap
# Apply element-wise transform (calls transform_rgb)
if parallel:
print('Starting parallel element-wise transform...')
num_points = table.shape[0] * table.shape[1] * table.shape[2]
stride_y = table.shape[0]
stride_z = table.shape[0] * table.shape[1]
results = joblib.Parallel(n_jobs=8)(
joblib.delayed(run_parallel)(
table,
(i % stride_y, (i % stride_z) // stride_y, i // stride_z),
preset,
extend_mat,
extend_mat_inv,
white_cap,
black_cap,
backlight_ext)
for i in range(num_points)
)
# Arrange the results
print('Arranging the results...')
for z in range(table.shape[2]):
for y in range(table.shape[1]):
for x in range(table.shape[0]):
index = x + (y * stride_y) + (z * stride_z)
table[x, y, z] = results[index]
else:
print('Starting serial element-wise transform...')
for z in range(table.shape[2]):
for y in range(table.shape[1]):
if print_indices:
print(f'at [0, {y}, {z}]')
for x in range(table.shape[0]):
table[x, y, z] = transform_rgb(
table[x, y, z],
preset,
extend_mat,
extend_mat_inv,
white_cap,
black_cap,
backlight_ext
)
# OETF (Gamma 2.2)
table = colour.algebra.spow(table, 1.0 / 2.2)
return table
# Calls transform_rgb
def run_parallel(table, indices, preset: dict, extend_mat, extend_mat_inv, white_cap, black_cap, backlight_ext):
result = transform_rgb(table[indices], preset, extend_mat, extend_mat_inv, white_cap, black_cap, backlight_ext)
if print_indices:
print(f'{indices} done')
return result
def negative_and_print(inp, preset: dict, backlight_ext):
log2_min = preset['sigmoid_log2_min']
log2_max = preset['sigmoid_log2_max']
sigmoid_points = np.array([
preset['sigmoid_toe_x'],
preset['sigmoid_toe_y'],
preset['sigmoid_shoulder_x'],
preset['sigmoid_shoulder_y']
])
# Develop Negative
inp = flim_rgb_develop(
inp,
preset['negative_film_exposure'],
log2_min,
log2_max,
sigmoid_points,
preset['negative_film_density']
)
# Backlight
inp = inp * backlight_ext
# Develop Print
inp = flim_rgb_develop(
inp,
preset['print_film_exposure'],
log2_min,
log2_max,
sigmoid_points,
preset['print_film_density']
)
return inp
# Transform a single RGB triplet
# You should never directly call this function.
def transform_rgb(inp, preset: dict, extend_mat, extend_mat_inv, white_cap, black_cap, backlight_ext):
# Pre-Formation Filter
inp = lerp(inp, inp * preset['pre_formation_filter'], preset['pre_formation_filter_strength'])
# Convert to extended gamut
inp = np.matmul(extend_mat, inp)
# Negative & Print
inp = negative_and_print(inp, preset, backlight_ext)
# Convert from extended gamut
inp = np.matmul(extend_mat_inv, inp)
# Eliminate negative values
inp = np.maximum(inp, 0.0)
# White cap
inp /= white_cap
# Black cap
if preset['black_point'] in ['Auto', 'auto', '', None]:
inp = rgb_uniform_offset(inp, rgb_avg(black_cap) * 1000.0, 0.0)
else:
inp = rgb_uniform_offset(inp, preset['black_point'], 0.0)
# Post-Formation Filter
inp = lerp(inp, inp * preset['post_formation_filter'], preset['post_formation_filter_strength'])
# Clip
inp = np.clip(inp, 0, 1)
# Midtone Saturation
mono = rgb_avg(inp)
mix = map_range_clamp(mono, 0.05, 0.5, 0.0, 1.0) if mono <= 0.5 else map_range_clamp(mono, 0.5, 0.95, 1.0, 0.0)
inp = lerp(inp, blender_hue_sat(inp, 0.5, preset['midtone_saturation'], 1.0), mix)
# Clip and return
return np.clip(inp, 0, 1)