-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathsuper_sigmoid.py
48 lines (35 loc) · 1.34 KB
/
super_sigmoid.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
import numpy as np
# https://www.desmos.com/calculator/khkztixyeu
def super_sigmoid(inp, toe_x, toe_y, shoulder_x, shoulder_y):
# Clip
inp = np.clip(inp, 0, 1)
toe_x = np.clip(toe_x, 0, 1)
toe_y = np.clip(toe_y, 0, 1)
shoulder_x = np.clip(shoulder_x, 0, 1)
shoulder_y = np.clip(shoulder_y, 0, 1)
# Calculate straight line slope
slope = (shoulder_y - toe_y) / (shoulder_x - toe_x)
# Toe
if inp < toe_x:
toe_pow = slope * toe_x / toe_y
return toe_y * (inp / toe_x)**toe_pow
# Straight line
if inp < shoulder_x:
intercept = toe_y - (slope * toe_x)
return slope * inp + intercept
# Shoulder
shoulder_pow = -slope / (((shoulder_x - 1.0) / (1.0 - shoulder_x)**2.0) * (1.0 - shoulder_y))
return (1.0 - (1.0 - (inp - shoulder_x) / (1.0 - shoulder_x))**shoulder_pow) * (1.0 - shoulder_y) + shoulder_y
def demo_plot():
import matplotlib.pyplot as plt
# Plot parameters
toe = [0.402, 0.273]
shoulder = [0.664, 0.699]
xs = np.arange(0.0, 1.0, 0.01)
ys = np.vectorize(super_sigmoid)(xs, toe[0], toe[1], shoulder[0], shoulder[1])
fig, ax = plt.subplots()
ax.plot(xs, ys)
ax.set(xlabel='normalized log of input', ylabel='normalized density',
title='Super-Sigmoid for flim')
ax.grid()
plt.show()