-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathparallelInplace.hpp
310 lines (268 loc) · 10.5 KB
/
parallelInplace.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
//////////////////////////////////////////////////////////
/// Code to sort merge two arrays in parallel taken
/// from an existing study.
///
/// By berenger.bramas@inria.fr 2020.
/// Licence is MIT.
/// Comes without any warranty.
///
/// Please refer to:
/// https://gitlab.inria.fr/bramas/inplace-merge
/// https://hal.inria.fr/hal-02613668
//////////////////////////////////////////////////////////
#ifndef PARALLELINPLACE_HPP
#define PARALLELINPLACE_HPP
#include <cstring>
#include <utility>
#include <algorithm>
#include <cassert>
#include <memory>
#include <omp.h>
namespace ParallelInplace {
// Reorder an array in place with extra moves :
// if we have [0 1 2 3 4 5 ; A B C]
// it creates [A B C ; 0 1 2 3 4 5]
template <class NumType>
inline void reorderShifting(NumType array[], const int lengthLeftPart, const int totalSize){
const int lengthRightPart = totalSize - lengthLeftPart;
// if one of the size is zero just return
if(lengthLeftPart == 0 || lengthRightPart == 0){
// do nothing
return;
}
// size of the partitions at first iteration
int workingLeftLength = lengthLeftPart;
int workingRightLength = lengthRightPart;
// while the partitions have different sizes and none of them are null
while(workingLeftLength != workingRightLength && workingLeftLength && workingRightLength){
// if the left partition is the smallest
if(workingLeftLength < workingRightLength){
// move the left parition in the correct place
for(int idx = 0 ; idx < workingLeftLength ; ++idx){
std::swap(array[idx], array[idx + workingRightLength]);
}
// the new left partition is now the values that have been swaped
workingRightLength = workingRightLength - workingLeftLength;
//workingLeftLength = workingLeftLength;
}
// if right partition is the smallest
else{
// move the right partition in the correct place
for(int idx = 0 ; idx < workingRightLength ; ++idx){
std::swap(array[idx], array[idx + workingLeftLength]);
}
// shift the pointer to skip the correct values
array = (array + workingRightLength);
// the new left partition is the previous right minus the swaped values
//workingRightLength = workingRightLength;
workingLeftLength = workingLeftLength - workingRightLength;
}
}
// if partitions have the same size
for(int idx = 0 ; idx < workingLeftLength ; ++idx){
std::swap(array[idx], array[idx + workingLeftLength]);
}
}
////////////////////////////////////////////////////////////////
// Merge functions
////////////////////////////////////////////////////////////////
template <class NumType>
void FindMedian(NumType array[], int centerPosition, const int sizeArray,
int* middleA, int* middleB){
if(centerPosition == 0 || centerPosition == sizeArray || array[centerPosition-1] <= array[centerPosition]){
*middleA = centerPosition;
*middleB = 0;
return;
}
if(!(array[0] <= array[sizeArray-1])){
*middleA = 0;
*middleB = sizeArray-centerPosition;
}
int leftStart = 0;
int leftLimite = centerPosition;
int leftPivot = (leftLimite-leftStart)/2 + leftStart;
int rightStart = centerPosition;
int rightLimte = sizeArray;
int rightPivot = (rightLimte-rightStart)/2 + rightStart;
while(leftStart < leftLimite && rightStart < rightLimte
&& !(array[leftPivot] == array[rightPivot])){
assert( leftPivot < leftLimite);
assert( rightPivot < rightLimte);
assert( leftPivot < centerPosition);
assert( rightPivot < sizeArray);
const int A0 = leftPivot-0;
const int A1 = centerPosition-leftPivot;
const int B0 = rightPivot-centerPosition;
const int B1 = sizeArray-rightPivot;
if(array[leftPivot] < array[rightPivot]){
if(A0+B0 < A1+B1){
leftStart = leftPivot+1;
leftPivot = (leftLimite-leftStart)/2 + leftStart;
}
else{
rightLimte = rightPivot;
rightPivot = (rightLimte-rightStart)/2 + rightStart;
}
}
else{
if(A0+B0 < A1+B1){
rightStart = rightPivot+1;
rightPivot = (rightLimte-rightStart)/2 + rightStart;
}
else{
leftLimite = leftPivot;
leftPivot = (leftLimite-leftStart)/2 + leftStart;
}
}
}
*middleA = leftPivot;
*middleB = rightPivot-centerPosition;
}
template <class NumType>
struct WorkingInterval{
NumType* array;
int currentStart;
int currentMiddle;
int currentEnd;
int level;
int depthLimite;
};
template <class NumType>
inline void parallelMergeInPlaceCore(NumType array[], int currentStart, int currentMiddle, int currentEnd,
int level, const int depthLimite,
volatile WorkingInterval<NumType> intervals[], volatile int barrier[]){
assert(0 <= currentStart);
assert(currentStart <= currentMiddle);
assert(currentMiddle <= currentEnd);
if(currentStart != currentMiddle && currentMiddle != currentEnd){
while(level != depthLimite && (currentEnd-currentStart) > 256){
int middleA = 0;
int middleB = 0;
FindMedian(array + currentStart, currentMiddle - currentStart, currentEnd-currentStart,
&middleA, &middleB);
const int sizeRestA = currentMiddle-currentStart-middleA;
const int sizeRestB = currentEnd-currentMiddle-middleB;
reorderShifting(array + middleA + currentStart, sizeRestA, middleB+sizeRestA);
const int targetThread = (1 << (depthLimite - level - 1)) + omp_get_thread_num();
// Should be #pragma omp atomic write
((WorkingInterval<NumType>*)intervals)[targetThread] = WorkingInterval<NumType>{array,
currentStart+middleA+middleB,
currentStart+middleA+middleB+sizeRestA,
currentEnd,
level+1, depthLimite};
#pragma omp atomic write
barrier[targetThread] = 1;
currentEnd = currentStart+middleA+middleB;
currentMiddle = currentStart+middleA;
assert(0 <= currentStart);
assert(currentStart <= currentMiddle);
assert(currentMiddle <= currentEnd);
level += 1;
}
std::inplace_merge(array + currentStart, array+currentMiddle, array+currentEnd);
}
while(level != depthLimite){
const int targetThread = (1 << (depthLimite - level - 1)) + omp_get_thread_num();
// Should be #pragma omp atomic write
((WorkingInterval<NumType>*)intervals)[targetThread] = WorkingInterval<NumType>{array,
currentEnd,
currentEnd,
currentEnd,
level+1, depthLimite};
#pragma omp atomic write
barrier[targetThread] = 1;
level += 1;
}
}
template <class NumType>
inline void parallelMergeInPlace(NumType array[], const int sizeArray, int centerPosition,
const long int numThreadsInvolved, const long int firstThread,
volatile WorkingInterval<NumType> intervals[], volatile int barrier[]){
const int numThread = omp_get_thread_num();
for(int idxThread = 0 ; idxThread < numThreadsInvolved ; ++idxThread){
if(idxThread + firstThread == numThread){
#pragma omp atomic write
barrier[numThread] = -1;
}
while(true){
int dataAreReady;
#pragma omp atomic read
dataAreReady = barrier[idxThread + firstThread];
if(dataAreReady == -1){
break;
}
}
}
// Already in good shape
if(centerPosition == 0 || centerPosition == sizeArray || array[centerPosition-1] <= array[centerPosition]){
for(int idxThread = 0 ; idxThread < numThreadsInvolved ; ++idxThread){
if(idxThread + firstThread == numThread){
#pragma omp atomic write
barrier[numThread] = 0;
}
while(true){
int dataAreReady;
#pragma omp atomic read
dataAreReady = barrier[idxThread + firstThread];
if(dataAreReady == 0){
break;
}
}
}
return;
}
for(int idxThread = 0 ; idxThread < numThreadsInvolved ; ++idxThread){
if(idxThread + firstThread == numThread){
#pragma omp atomic write
barrier[numThread] = -2;
}
while(true){
int dataAreReady;
#pragma omp atomic read
dataAreReady = barrier[idxThread + firstThread];
if(dataAreReady == -2){
break;
}
}
}
if(numThread == firstThread){
const int depthLimite = ffs(numThreadsInvolved) - 1;
#pragma omp atomic write
barrier[numThread] = 1;
parallelMergeInPlaceCore<NumType>(array, 0, centerPosition, sizeArray, 0, depthLimite,
intervals, barrier);
}
else{
while(true){
int myDataAreReady;
#pragma omp atomic read
myDataAreReady = barrier[numThread];
if(myDataAreReady == 1){
break;
}
}
parallelMergeInPlaceCore<NumType>(intervals[numThread].array,
intervals[numThread].currentStart,
intervals[numThread].currentMiddle,
intervals[numThread].currentEnd,
intervals[numThread].level,
intervals[numThread].depthLimite,
intervals, barrier);
}
for(int idxThread = 0 ; idxThread < numThreadsInvolved ; ++idxThread){
if(idxThread + firstThread == numThread){
#pragma omp atomic write
barrier[numThread] = 0;
}
while(true){
int dataAreReady;
#pragma omp atomic read
dataAreReady = barrier[idxThread + firstThread];
if(dataAreReady == 0){
break;
}
}
}
}
}
#endif