-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsplit_data.py
95 lines (82 loc) · 2.86 KB
/
split_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
import argparse
import os
import pandas as pd
from multi_level_split.util import train_test_split
def add_camera(metadata, camera_meta_file):
camera_meta = pd.read_csv(camera_meta_file)
cams = []
for site in metadata.clinical_siteIdentifier:
try:
cams.append(
camera_meta.loc[camera_meta["site_id"] == site].device.values[0]
)
except IndexError:
cams.append("Unknown")
metadata["camera"] = cams
# this is actually already given in the metadata
def add_eye_side(metadata):
metadata["eye_side"] = [
1 if path.split(" ")[0].split("_")[-1] == "Left" else 0
for path in metadata.image_path
]
if __name__ == "__main__":
parser = argparse.ArgumentParser(
description="split metadata in train, val, test",
formatter_class=argparse.ArgumentDefaultsHelpFormatter,
)
parser.add_argument(
"--metadata_path",
type=str,
help="path to eyepacs metadata (pre-processed version)",
default="/gpfs01/berens/data/data/eyepacs/data_processed/metadata/",
)
parser.add_argument(
"--splits_dir",
type=str,
help="directory for dataset splits",
default="splits_circular_crop/",
)
parser.add_argument(
"--camera_meta_file",
type=str,
help="file for camera metadata",
default="/gpfs01/berens/data/data/eyepacs/data_raw/metadata/site-to-camera-list.csv",
)
parser.add_argument(
"--root_dataset_dir",
type=str,
help="root directory to pre-processed eyepacs data",
default="/gpfs01/berens/data/data/eyepacs/data_processed/",
)
args = parser.parse_args()
print("Load metadata.")
# Load metadata file.
eyepacs_metadata = os.path.join(
args.metadata_path, "metadata.csv"
)
metadata_df = pd.read_csv(eyepacs_metadata)
print("Add camera info.")
# Add camera information as extra column.
add_camera(metadata_df, camera_meta_file=args.camera_meta_file)
print("Add eye side.")
# Add eye side as extra column, left eye is 1, right eye 0.
add_eye_side(metadata_df)
print("Split data into train, val and test.")
# Split data into train (60%), validation (20%) and test (20%).
dev, test = train_test_split(
metadata_df, "image_id", split_by="patient_id", test_split=0.2, seed=42
)
train, val = train_test_split(
dev, "image_id", split_by="patient_id", test_split=0.25, seed=42
)
print("Save on disc.")
# Save split data.
split_dict = {"train": train, "val": val, "test": test}
split_dir = os.path.join(args.metadata_path, args.split_path)
if not os.path.exists(split_dir):
os.makedirs(split_dir)
for k, v in split_dict.items():
v.to_csv(
os.path.join(split_dir, "".join((k, ".csv"))),
index=False,
)