-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinference.py
158 lines (113 loc) · 5.99 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
# coding: utf-8
# @Bestat 2019
#-------------------------------------------
# Use Frozen Model and Calculate Predictions
#-------------------------------------------
# Import packages
import sys
sys.path.append("./")
import os
import cv2
import numpy as np
import glob
from tqdm import tqdm
import tensorflow as tf
import label_map_util
import visualization_utils as vis_util
class TF_Detector():
def __init__(self):
self.BASE_PATH = '/opt/solar_panel_detection'
self.PATH_TO_MODEL_FOLDER = 'frozen_model/faster_rcnn_experiment_1'
self.PATH_TO_FROZEN_GRAPH = os.path.join(self.BASE_PATH , self.PATH_TO_MODEL_FOLDER,'frozen_inference_graph.pb')
self.PATH_TO_LABELS = os.path.join(self.BASE_PATH,'data/labelmap.pbtxt')
self.TEST_IMAGE_PATH = '/share/data_solar_panel/RGB_patches'
self.NUM_CLASSES = 1
self.visualize = False
def get_test_images(self,test_dir):
# Get test image paths
TEST_IMAGES = [os.path.split(i)[-1] for i in glob.glob(os.path.join(test_dir,'*.png'))]
return sorted(TEST_IMAGES)
def main(self,image_filepath):
TEST_IMAGES = self.get_test_images(image_filepath)
box_coord = []
for IMAGE_NAME in tqdm(TEST_IMAGES):
print('********************************')
print('Processing image:',IMAGE_NAME)
print('********************************')
# Path to image
PATH_TO_IMAGE = os.path.join(self.TEST_IMAGE_PATH,IMAGE_NAME)
img = cv2.imread(PATH_TO_IMAGE)
width = img.shape[1]
height = img.shape[0]
# Load the label map.
label_map = label_map_util.load_labelmap(self.PATH_TO_LABELS)
categories = label_map_util.convert_label_map_to_categories(label_map, max_num_classes=self.NUM_CLASSES, use_display_name=True)
category_index = label_map_util.create_category_index(categories)
# Load Tensorflow model into memory.
detection_graph = tf.Graph()
with detection_graph.as_default():
od_graph_def = tf.GraphDef()
with tf.gfile.GFile(self.PATH_TO_FROZEN_GRAPH, 'rb') as f:
serialized_graph = f.read()
od_graph_def.ParseFromString(serialized_graph)
tf.import_graph_def(od_graph_def, name='')
sess = tf.Session(graph=detection_graph)
# Input tensor is the image
image_tensor = detection_graph.get_tensor_by_name('image_tensor:0')
# Output tensors are the detection boxes, scores, and classes
detection_boxes = detection_graph.get_tensor_by_name('detection_boxes:0')
# Each score represents level of confidence for each of the objects.
detection_scores = detection_graph.get_tensor_by_name('detection_scores:0')
detection_classes = detection_graph.get_tensor_by_name('detection_classes:0')
# Number of objects detected
num_detections = detection_graph.get_tensor_by_name('num_detections:0')
# Load image using OpenCV and
# expand image dimensions to have shape: [1, None, None, 3]
image = cv2.imread(PATH_TO_IMAGE)
image_expanded = np.expand_dims(image, axis=0)
# Perform the actual detection by running the model with the image as input
(boxes, scores, classes, num) = sess.run([detection_boxes,
detection_scores,
detection_classes,
num_detections],
feed_dict={image_tensor: image_expanded})
if self.visualize:
# Draw the results of the detection
vis_util.visualize_boxes_and_labels_on_image_array(image,
np.squeeze(boxes),
np.squeeze(classes).astype(np.int32),
np.squeeze(scores),
category_index,
use_normalized_coordinates=True,
line_thickness=6,
min_score_thresh=0.2)
# All the results have been drawn on image
cv2.imwrite(os.path.join(self.BASE_PATH,'results/{}'.format(IMAGE_NAME)),image)
#plt.imshow(image,cmap='gnuplot')
#plt.show()
# Get scores and bboxes
for i,score in enumerate(np.squeeze(scores)):
# inx of bbox
bbox = 'bbox_{}'.format(i)
if score >= 0.2:
#get bbox coordinates
ymin,xmin,ymax,xmax = np.squeeze(boxes)[i]
ymin = int(ymin * height)
xmin = int(xmin * width)
ymax = int(ymax * height)
xmax = int(xmax * width)
coordinates = (ymin,xmin,ymax,xmax)
box_coord.append(coordinates)
else:
continue
print('*****************************************************')
print('Image Name:',IMAGE_NAME)
print('Box Coordinates:',box_coord)
print('Number of Detected Boxes',np.array(box_coord).shape[0])
print('*****************************************************')
print('Total Detected Objects:',np.array(box_coord).shape[0])
print('Shape of Box Array:',np.array(box_coord).shape)
return np.array(box_coord)
if __name__ == '__main__':
inference = TF_Detector()
inference.main()