-
Notifications
You must be signed in to change notification settings - Fork 31
/
Copy pathtrain_wavenet.py
202 lines (170 loc) · 8.14 KB
/
train_wavenet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
import json
import numpy as np
import tensorflow as tf
import shutil
import os
import glob
from argparse import ArgumentParser, Namespace
from wavenet import wavenet
from deployment import model_deploy
from auxilaries import reader, config_str, enhance_log
slim = tf.contrib.slim
GRAD_CLIP = False
EXP_TAG = 'GC' if GRAD_CLIP else ''
def _init_logging(array, array_name):
tf.logging.info(
'initial {0}.m {1:.5f}, {0}.std {2:.5f}, '
'{0}.min {3:.5f}, {0}.max {4:.5f}'.format(
array_name, array.mean(), array.std(),
array.min(), array.max()))
def grad_clip(grads_vars, clip_norm=1.0):
grads = [gv[0] for gv in grads_vars]
variables = [gv[1] for gv in grads_vars]
clipped_grads, _ = tf.clip_by_global_norm(grads, clip_norm)
clipped_grads_vars = zip(clipped_grads, variables)
return clipped_grads_vars
def train(args):
os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu_id
tf.logging.set_verbosity(args.log)
clone_on_cpu = args.gpu_id == ''
num_clones = len(args.gpu_id.split(','))
if args.log_root:
if args.config is None:
raise RuntimeError('No config json specified.')
config_json = args.config
with open(config_json, 'rt') as F:
configs = json.load(F)
hparams = Namespace(**configs)
logdir_name = config_str.get_config_time_str(hparams, 'wavenet', EXP_TAG)
logdir = os.path.join(args.log_root, logdir_name)
os.makedirs(logdir, exist_ok=True)
shutil.copy(config_json, logdir)
else:
logdir = args.logdir
config_json = glob.glob(os.path.join(logdir, '*.json'))[0]
with open(config_json, 'rt') as F:
configs = json.load(F)
hparams = Namespace(**configs)
enhance_log.add_log_file(logdir)
if not args.log_root:
tf.logging.info('Continue running\n\n')
tf.logging.info('using config form {}'.format(config_json))
tf.logging.info('Saving to {}'.format(logdir))
wn = wavenet.Wavenet(hparams, os.path.abspath(os.path.expanduser(args.train_path)))
wn_config_str = enhance_log.instance_attr_to_str(wn)
tf.logging.info('\n' + wn_config_str)
def _data_dep_init():
# slim.learning.train runs init_fn earlier than start_queue_runner
# so the the function got dead locker if use the `input_dict` in L76 as input
inputs_val = reader.get_init_batch(
wn.train_path, batch_size=args.total_batch_size, seq_len=wn.wave_length)
wave_data = inputs_val['wav']
mel_data = inputs_val['mel']
_inputs_dict = {
'wav': tf.placeholder(dtype=tf.float32, shape=wave_data.shape),
'mel': tf.placeholder(dtype=tf.float32, shape=mel_data.shape)}
encode_dict = wn.encode_signal(_inputs_dict)
_inputs_dict.update(encode_dict)
init_ff_dict = wn.feed_forward(_inputs_dict, init=True)
def callback(session):
tf.logging.info('Calculate initial statistics.')
init_out = session.run(
init_ff_dict, feed_dict={_inputs_dict['wav']: wave_data,
_inputs_dict['mel']: mel_data})
init_out_params = init_out['out_params']
if wn.loss_type == 'mol':
_, mean, log_scale = np.split(init_out_params, 3, axis=2)
scale = np.exp(np.maximum(log_scale, -7.0))
_init_logging(mean, 'mean')
_init_logging(scale, 'scale')
elif wn.loss_type == 'gauss':
mean, log_std = np.split(init_out_params, 2, axis=2)
std = np.exp(np.maximum(log_std, -7.0))
_init_logging(mean, 'mean')
_init_logging(std, 'std')
tf.logging.info('Done Calculate initial statistics.')
return callback
def _model_fn(_inputs_dict):
encode_dict = wn.encode_signal(_inputs_dict)
_inputs_dict.update(encode_dict)
ff_dict = wn.feed_forward(_inputs_dict)
ff_dict.update(encode_dict)
loss_dict = wn.calculate_loss(ff_dict)
loss = loss_dict['loss']
tf.add_to_collection(tf.GraphKeys.LOSSES, loss)
with tf.Graph().as_default():
total_batch_size = args.total_batch_size
assert total_batch_size % num_clones == 0
clone_batch_size = int(total_batch_size / num_clones)
deploy_config = model_deploy.DeploymentConfig(
num_clones=num_clones, clone_on_cpu=clone_on_cpu,
num_ps_tasks=0,
worker_job_name='localhost', ps_job_name='localhost')
with tf.device(deploy_config.inputs_device()):
inputs_dict = wn.get_batch(clone_batch_size)
summaries = set(tf.get_collection(tf.GraphKeys.SUMMARIES))
clones = model_deploy.create_clones(deploy_config, _model_fn, [inputs_dict])
first_clone_scope = deploy_config.clone_scope(0)
update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS, first_clone_scope)
summaries.update(tf.get_collection(tf.GraphKeys.SUMMARIES, first_clone_scope))
with tf.device(deploy_config.variables_device()):
global_step = tf.get_variable(
"global_step", [],
tf.int32,
initializer=tf.constant_initializer(0),
trainable=False)
with tf.device(deploy_config.optimizer_device()):
lr = tf.constant(wn.learning_rate_schedule[0])
for key, value in wn.learning_rate_schedule.items():
lr = tf.cond(
tf.less(global_step, key), lambda: lr, lambda: tf.constant(value))
summaries.add(tf.summary.scalar("learning_rate", lr))
optimizer = tf.train.AdamOptimizer(lr, epsilon=1e-8)
ema = tf.train.ExponentialMovingAverage(decay=0.9999, num_updates=global_step)
loss, clone_grads_vars = model_deploy.optimize_clones(
clones, optimizer, var_list=tf.trainable_variables())
if GRAD_CLIP:
clone_grads_vars = grad_clip(clone_grads_vars)
update_ops.append(
optimizer.apply_gradients(clone_grads_vars, global_step=global_step))
update_ops.append(ema.apply(tf.trainable_variables()))
summaries.add(tf.summary.scalar("train_loss", loss))
update_op = tf.group(*update_ops)
with tf.control_dependencies([update_op]):
train_tensor = tf.identity(loss, name='train_op')
session_config = tf.ConfigProto(allow_soft_placement=True)
session_config.gpu_options.allow_growth = True
summary_op = tf.summary.merge(list(summaries), name='summary_op')
data_dep_init_fn = _data_dep_init()
slim.learning.train(
train_tensor,
logdir=logdir,
number_of_steps=wn.num_iters,
summary_op=summary_op,
global_step=global_step,
log_every_n_steps=100,
save_summaries_secs=600,
save_interval_secs=3600,
session_config=session_config,
init_fn=data_dep_init_fn)
if __name__ == '__main__':
parser = ArgumentParser()
parser.add_argument("--config", required=False,
help="Model configuration name")
parser.add_argument("--train_path", required=True,
help="The path to the train tfrecord.")
parser.add_argument("--logdir", default="/tmp/nsynth",
help="The log directory for this experiment.")
parser.add_argument("--log_root", default="",
help="The log directory for this experiment.")
parser.add_argument("--total_batch_size", default=4, type=int,
help="Batch size spread across all sync replicas."
"We use a size of 32.")
parser.add_argument("--log", default="INFO",
help="The threshold for what messages will be logged."
"DEBUG, INFO, WARN, ERROR, or FATAL.")
parser.add_argument("--gpu_id", default='0',
help="gpu device for generation, "
"cpu e.g. \"\", single gpu e.g. \"0\", multiple gpu e.g. \"1,3,5\"")
args = parser.parse_args()
train(args)