-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathno_name1.R
115 lines (105 loc) · 4.02 KB
/
no_name1.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
T <- function(p, n) cos(n * acos(2 * p - 1))
make_c <- function(quantiles, u) {
if (!all(diff(quantiles) > 0)) stop("'quantiles' must be in increasing order")
if (!all(diff(u) > 0)) stop("'p' must be in increasing order")
if (length(quantiles) != length(u)) stop("'quantiles' and 'p' must have the same size")
if (any(is.infinite(quantiles))) {
if (quantiles[1] > -Inf) {
quantiles <- tanh(log(quantiles))
} else if (quantiles[length(quantiles)] == Inf) {
quantiles <- tanh(quantiles)
} else stop("implement this")
}
return(solve(sapply(0:(length(u) - 1L), T, p = u), quantiles))
}
qno_name1 <- function(quantiles,
u = 0.5 + 0.5 * cos(seq(from = pi, to = 0, by = -pi / (length(quantiles) - 1L))),
check = TRUE) {
if (any(is.infinite(quantiles))) {
if (quantiles[1] > -Inf) {
lower_bounded <- TRUE
upper_bounded <- unbounded <- FALSE
quantiles <- tanh(log(quantiles))
} else if (quantiles[length(quantiles)] == Inf) {
unbounded <- TRUE
lower_bounded <- upper_bounded <- FALSE
quantiles <- tanh(quantiles)
} else stop("implement this")
} else {
lower_bounded <- upper_bounded <- unbounded <- FALSE
}
c <- make_c(quantiles, u)
if (missing(u)) c <- zapsmall(c)
len <- length(c) - 1L
if (check) boyd(c)
if (lower_bounded)
return(Vectorize(function(p) exp(atanh(crossprod(T(p, n = 0:(length(c) - 1L)), c)[1]))))
if (unbounded)
return(Vectorize(function(p) atanh(crossprod(T(p, n = 0:(length(c) - 1L)), c)[1])))
return(Vectorize(function(p) crossprod(T(p, n = 0:(length(c) - 1L)), c)[1]))
}
# https://epubs.siam.org/doi/pdf/10.1137/S0036142901398325 section 3
boyd <- function(a) {
SEQ <- seq(from = 1, to = length(a), by = 2L)
a_even <- a[ SEQ]
a_odd <- a[-SEQ]
if (length(a_even) == 1L) Q_even <- diag(1)
else {
Q_even <- diag(2.0^(2L * (1L:length(a_even)) - 3L))
Q_even[1L, 1L] <- 1.0
}
if (ncol(Q_even) > 1L) for (j in 2:ncol(Q_even)) {
j2 <- 2L * j
j4 <- 4L * j
for (K in 1:(j - 1L)) {
K2 <- 2L * K
d <- j2 - K2
Q_even[j - K, j] <- round(-d * (d - 1) /
(K2 * (j4 - K2 - 4)) * Q_even[j - K + 1L, j])
}
}
Q_odd <- diag(2.0^(2L * (1L:length(a_odd)) - 2L))
if (ncol(Q_odd) > 1L) for (j in 2:ncol(Q_odd)) {
j2 <- 2L * j
j4 <- 4L * j
for (K in 1:(j - 1L)) {
K2 <- 2L * K
d <- j - K
Q_odd[j - K, j] <- round(-(2 * d + 1) * d /
(K * (j4 - K2 - 2)) * Q_odd[j - K + 1L, j])
}
}
b_even <- Q_even %*% a_even
b_odd <- Q_odd %*% a_odd
b <- rep(NA_real_, length(a))
b[ SEQ] <- b_even
b[-SEQ] <- b_odd
# https://en.wikipedia.org/wiki/Binomial_theorem
# b is the vector of coefficients for powers of (2 * p - 1)
# b_[ , 1] is the vector of coefficients for powers of p
# b_[ , 2] is the vector of coefficients for powers of p + 1
# https://en.wikipedia.org/wiki/Budan%27s_theorem
b_ <- matrix(0, length(b), 2)
for (n in 0:(length(b) - 1L)) for (k in 0:n) {
temp <- b[n + 1L] * choose(n, k) * 2^k
b_[k + 1L, 1L] <- b_[k + 1L, 1L] + temp * (-1)^(n - k)
b_[k + 1L, 2L] <- b_[k + 1L, 2L] + temp
}
if (diff(apply(b_, MARGIN = 2L, FUN = function(x) {
sum(diff(ifelse(x == 0, NA_integer_, sign(x))) != 0, na.rm = TRUE)
})) < 0 ) {
roots <- polyroot(1:(length(b) - 1L) * b_[-1, 1L]) # local minima / maxima
real_roots <- Re(roots[abs(Im(roots)) < 1e-13])
real_roots <- real_roots[real_roots > 0 & real_roots < 1]
if (length(real_roots) == 0L) return(TRUE)
q <- Vectorize(function(p) (T(p, n = 0:(length(a) - 1L)) %*% a)[1])
curve(q(p), from = 0, to = 1,
n = 10001, xname = "p", ylab = expression(theta), axes = FALSE, las = 1)
axis(1)
abline(v = real_roots, col = 2, lty = 2)
stop("\nImplied quantile function is decreasing near ",
paste(round(real_roots, digits = 4), collapse = ", "), ".",
"\nTry increasing the number of quantiles and / or changing their values.")
}
return(TRUE)
}