-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathuser_utils.py
43 lines (32 loc) · 1.37 KB
/
user_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
import pinecone
from langchain.vectorstores import Pinecone
from langchain.embeddings.sentence_transformer import SentenceTransformerEmbeddings
from langchain.llms import OpenAI
from langchain.chains.question_answering import load_qa_chain
from langchain.callbacks import get_openai_callback
import joblib
#Function to pull index data from Pinecone
def pull_from_pinecone(pinecone_apikey,pinecone_environment,pinecone_index_name,embeddings):
pinecone.init(
api_key=pinecone_apikey,
environment=pinecone_environment
)
index_name = pinecone_index_name
index = Pinecone.from_existing_index(index_name, embeddings)
return index
def create_embeddings():
embeddings = SentenceTransformerEmbeddings(model_name="all-MiniLM-L6-v2")
return embeddings
#This function will help us in fetching the top relevent documents from our vector store - Pinecone Index
def get_similar_docs(index,query,k=2):
similar_docs = index.similarity_search(query, k=k)
return similar_docs
def get_answer(docs,user_input):
chain = load_qa_chain(OpenAI(), chain_type="stuff")
with get_openai_callback() as cb:
response = chain.run(input_documents=docs, question=user_input)
return response
def predict(query_result):
Fitmodel = joblib.load('modelsvm.pk1')
result=Fitmodel.predict([query_result])
return result[0]