forked from bigai-ai/ICE
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathedit.py
2703 lines (2315 loc) · 104 KB
/
edit.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import hydra
from easyeditor import BaseEditor
from easyeditor import KNHyperParams, FTHyperParams, KETrainingHparams,\
ROMEHyperParams, MEMITHyperParams, MENDTrainingHparams, MENDHyperParams, \
SERACTrainingHparams, SERACHparams, IKEHyperParams, FTApiHyperParams, LoRAHyperParams, \
GraceHyperParams, PMETHyperParams,MELOHyperParams, MALMENTrainingHparams, MALMENHyperParams
from easyeditor import ZsreDataset, CounterFactDataset
from easyeditor import EditTrainer
from easyeditor.models.ike import encode_ike_facts
from sentence_transformers import SentenceTransformer
def test_KE():
prompts = ['Who is the architect for Toodyay Fire Station?', 'Who is Claire Clairmont\'s sister?',
'Which fictional universe is Chlorophyll Kid part of?']
ground_truth = ['Ken Duncan', 'Mary Shelley', 'DC Universe']
target_new = ['Wong Tung & Sons', 'Clairmont-Mayer', 'Image Universe']
hparams = KEHyperParams.from_hparams('./hparams/KE/gpt2-xl')
editor = BaseEditor.from_hparams(hparams)
metrics, edited_model, _ = editor.batch_edit(
prompts=prompts + prompts,
ground_truth=ground_truth + ground_truth,
target_new=target_new + target_new
)
return metrics, edited_model
def test_KN():
prompts = ['Who is the architect for Toodyay Fire Station?', 'Who is Claire Clairmont\'s sister?',
'Which fictional universe is Chlorophyll Kid part of?']
ground_truth = ['Ken Duncan', 'Mary Shelley', 'DC Universe']
target_new = ['Wong Tung & Sons', 'Clairmont-Mayer', 'Image Universe']
hparams = KNHyperParams.from_hparams('hparams/KN/t5-3B')
editor = BaseEditor.from_hparams(hparams)
metrics, edited_model, _ = editor.edit(
prompts='What university did Watts Humphrey attend?' if prompts is None else prompts,
ground_truth='Illinois Institute of Technology' if ground_truth is None else ground_truth,
target_new='University of Michigan' if target_new is None else target_new
)
return metrics, edited_model
def test_KN_GPTJ():
prompts = ['Who is the architect for Toodyay Fire Station?', 'Who is Claire Clairmont\'s sister?',
'Which fictional universe is Chlorophyll Kid part of?']
ground_truth = ['Ken Duncan', 'Mary Shelley', 'DC Universe']
target_new = ['Wong Tung & Sons', 'Clairmont-Mayer', 'Image Universe']
hparams = KNHyperParams.from_hparams('hparams/KN/gpt-j-6B.yaml')
editor = BaseEditor.from_hparams(hparams)
metrics, edited_model, _ = editor.edit(
prompts='What university did Watts Humphrey attend?' if prompts is None else prompts,
ground_truth='Illinois Institute of Technology' if ground_truth is None else ground_truth,
target_new='University of Michigan' if target_new is None else target_new,
keep_original_weight=True,
)
import pdb
pdb.set_trace()
return metrics, edited_model
def test_FT():
prompts = ['Who is the architect for Toodyay Fire Station?', 'Who is Claire Clairmont\'s sister?',
'Which fictional universe is Chlorophyll Kid part of?']
ground_truth = ['Ken Duncan', 'Mary Shelley', 'DC Universe']
target_new = ['Wong Tung & Sons', 'Clairmont-Mayer', 'Image Universe']
hparams = FTHyperParams.from_hparams('hparams/FT/gpt2-xl')
editor = BaseEditor.from_hparams(hparams)
metrics, edited_model, _ = editor.batch_edit(
prompts=prompts + prompts,
ground_truth=ground_truth + ground_truth,
target_new=target_new + target_new
)
return metrics, edited_model
def test_FT_GPTJ():
prompts = ['Who is the architect for Toodyay Fire Station?', 'Who is Claire Clairmont\'s sister?',
'Which fictional universe is Chlorophyll Kid part of?']
ground_truth = ['Ken Duncan', 'Mary Shelley', 'DC Universe']
target_new = ['Wong Tung & Sons', 'Clairmont-Mayer', 'Image Universe']
hparams = FTHyperParams.from_hparams('hparams/FT/gpt-j-6B.yaml')
editor = BaseEditor.from_hparams(hparams)
metrics, edited_model, _ = editor.edit(
prompts=prompts + prompts,
ground_truth=ground_truth + ground_truth,
target_new=target_new + target_new,
keep_original_weight=True
)
import pdb
pdb.set_trace()
return metrics, edited_model
def test_ZsreDataSet_Edit():
hparams = FTHyperParams.from_hparams('hparams/FT/gpt2-xl')
editor = BaseEditor.from_hparams(hparams)
ds = ZsreDataset('data/zsre_mend_eval.json')
metrics, edited_model, _ = editor.edit_dataset(ds)
return metrics, edited_model
def test_CounterfactDataSet_Edit():
hparams = KNHyperParams.from_hparams('hparams/KN/t5-3B')
editor = BaseEditor.from_hparams(hparams)
ds = CounterFactDataset('data/counterfact.json')
metrics, edited_model, _ = editor.edit_dataset(ds)
return metrics, edited_model
def test_KE_Hyperparams():
training_hparams = KETrainingHparams.from_hparams('hparams/TRAINING/KE')
import pdb
pdb.set_trace()
def test_KE_Meta_Train():
training_hparams = KETrainingHparams.from_hparams('hparams/TRAINING/KE')
train_ds = ZsreDataset('data/zsre_mend_train.json', config=training_hparams)
eval_ds = ZsreDataset('data/zsre_mend_eval.json', config=training_hparams)
trainer = EditTrainer(
config=training_hparams,
train_set=train_ds,
val_set=eval_ds
)
trainer.run()
def test_KE_Meta_Train_GPTJ():
training_hparams = KETrainingHparams.from_hparams('hparams/TRAINING/KE/gpt-j-6B.yaml')
train_ds = ZsreDataset('data/zsre_mend_train.json', config=training_hparams)
eval_ds = ZsreDataset('data/zsre_mend_eval.json', config=training_hparams)
trainer = EditTrainer(
config=training_hparams,
train_set=train_ds,
val_set=eval_ds
)
trainer.run()
def test_MEND_Meta_Train():
training_hparams = MENDTrainingHparams.from_hparams('hparams/TRAINING/MEND/llama-7b.yaml')
train_ds = ZsreDataset('data/zsre_mend_train.json', config=training_hparams)
eval_ds = ZsreDataset('data/zsre_mend_eval.json', config=training_hparams)
trainer = EditTrainer(
config=training_hparams,
train_set=train_ds,
val_set=eval_ds
)
trainer.run()
def test_KE_Meta_Counterfacat_Train():
training_hparams = KETrainingHparams.from_hparams('hparams/TRAINING/KE')
train_ds = CounterFactDataset('data/counterfact-train.json', config=training_hparams)
eval_ds = CounterFactDataset('data/counterfact-val.json', config=training_hparams)
trainer = EditTrainer(
config=training_hparams,
train_set=train_ds,
val_set=eval_ds
)
trainer.run()
def test_ROME():
prompts = ['What university did Watts Humphrey attend?', 'Which family does Ramalinaceae belong to',
'What role does Denny Herzig play in football?', 'Who was the designer of Lahti Town Hall?',
'What is the original channel that It\'s a Business played on?', 'What city did Marl Young live when he died?']
ground_truth = ['Illinois Institute of Technology', 'Lecanorales', 'defender',
'Eliel Saarinen', 'DuMont Television Network', 'Los Angeles']
target_new = ['University of Michigan', 'Lamiinae', 'winger',
'Alfred Lahti', 'ITV', 'New Orleans']
subject = ['Watts Humphrey', 'Ramalinaceae', 'Denny Herzig',
'Lahti Town Hall', 'It\'s a Business', 'Marl Young']
hparams = ROMEHyperParams.from_hparams('hparams/ROME/gpt2-xl')
editor = BaseEditor.from_hparams(hparams)
metrics, edited_model, _ = editor.edit(
prompts=prompts,
ground_truth=ground_truth,
target_new=target_new,
subject=subject,
keep_original_weight=True
)
import pdb
pdb.set_trace()
return metrics, edited_model
def test_MEMIT():
prompts = ['Ray Charles, the',
'Grant Hill is a professional',
'The law in Ikaalinen declares the language'
]
ground_truth = ['piano',
'basketball',
'Finnish'
]
target_new = ['violin',
'soccer',
'Swedish'
]
subject = ['Ray Charles',
'Grant Hill',
'Ikaalinen'
]
locality_inputs = {
'neighborhood':{
'prompt': ['Joseph Fischhof, the', 'Larry Bird is a professional', 'In Forssa, they understand'],
'ground_truth': ['piano', 'basketball', 'Finnish']
},
'distracting': {
'prompt': ['Ray Charles, the violin Hauschka plays the instrument', 'Grant Hill is a professional soccer Magic Johnson is a professional', 'The law in Ikaalinen declares the language Swedish In Loviisa, the language spoken is'],
'ground_truth': ['piano', 'basketball', 'Finnish']
}
}
portability_inputs = {
'synonym':{
'prompt': ['Ray Charles, the', 'Grant Hill is a professional', 'The law in Ikalis declares the language'],
'ground_truth': ['violin', 'soccer', 'Swedish']
},
'one_hop':{
'prompt': ['Ray Charles, the', 'Grant Hill is a professional', 'The law in Ikalis declares the language'],
'ground_truth': ['violin', 'soccer', 'Swedish']
}
}
hparams = MEMITHyperParams.from_hparams('hparams/MEMIT/gpt2-xl')
editor = BaseEditor.from_hparams(hparams)
metrics, edited_model, _ = editor.edit(
prompts=prompts,
ground_truth=ground_truth,
target_new=target_new,
subject=subject,
locality_inputs=locality_inputs,
portability_inputs=portability_inputs,
keep_original_weight=True
)
import pdb
pdb.set_trace()
return metrics, edited_model
def test_PMET():
prompts = ['Ray Charles, the',
'Grant Hill is a professional',
'The law in Ikaalinen declares the language'
]
ground_truth = ['piano',
'basketball',
'Finnish'
]
target_new = ['violin',
'soccer',
'Swedish'
]
subject = ['Ray Charles',
'Grant Hill',
'Ikaalinen'
]
locality_inputs = {
'neighborhood':{
'prompt': ['Joseph Fischhof, the', 'Larry Bird is a professional', 'In Forssa, they understand'],
'ground_truth': ['piano', 'basketball', 'Finnish']
},
'distracting': {
'prompt': ['Ray Charles, the violin Hauschka plays the instrument', 'Grant Hill is a professional soccer Magic Johnson is a professional', 'The law in Ikaalinen declares the language Swedish In Loviisa, the language spoken is'],
'ground_truth': ['piano', 'basketball', 'Finnish']
}
}
portability_inputs = {
'synonym':{
'prompt': ['Ray Charles, the', 'Grant Hill is a professional', 'The law in Ikalis declares the language'],
'ground_truth': ['violin', 'soccer', 'Swedish']
},
'one_hop':{
'prompt': ['Ray Charles, the', 'Grant Hill is a professional', 'The law in Ikalis declares the language'],
'ground_truth': ['violin', 'soccer', 'Swedish']
}
}
hparams = PMETHyperParams.from_hparams('hparams/PMET/llama-7b')
editor = BaseEditor.from_hparams(hparams)
metrics, edited_model, _ = editor.edit(
prompts=prompts,
ground_truth=ground_truth,
target_new=target_new,
subject=subject,
locality_inputs=locality_inputs,
portability_inputs=portability_inputs,
keep_original_weight=True
)
import pdb
pdb.set_trace()
return metrics, edited_model
def test_MEND():
prompts = ['What university did Watts Humphrey attend?', 'Which family does Ramalinaceae belong to',
'What role does Denny Herzig play in football?', 'Who was the designer of Lahti Town Hall?',
'What is the original channel that It\'s a Business played on?', 'What city did Marl Young live when he died?',
'Steve Jobs was the founder of', 'LeBron James plays the sport of']
ground_truth = ['Illinois Institute of Technology', 'Lecanorales', 'defender',
'Eliel Saarinen', 'DuMont Television Network', 'Los Angeles', 'Apple', 'basketball']
target_new = ['University of Michigan', 'Lamiinae', 'winger',
'Alfred Lahti', 'ITV', 'New Orleans', 'Microsoft', 'football']
hparams = MENDHyperParams.from_hparams('hparams/MEND/gpt2-xl')
editor = BaseEditor.from_hparams(hparams)
metrics, edited_model, _ = editor.edit(
prompts=prompts,
ground_truth=ground_truth,
target_new=target_new,
keep_original_weight=True
)
import pdb
pdb.set_trace()
return metrics, edited_model
def test_KE():
prompts = ['What university did Watts Humphrey attend?', 'Which family does Ramalinaceae belong to',
'What role does Denny Herzig play in football?', 'Who was the designer of Lahti Town Hall?',
'What is the original channel that It\'s a Business played on?', 'What city did Marl Young live when he died?',
'Steve Jobs was the founder of', 'LeBron James plays the sport of']
ground_truth = ['Illinois Institute of Technology', 'Lecanorales', 'defender',
'Eliel Saarinen', 'DuMont Television Network', 'Los Angeles', 'Apple', 'basketball']
target_new = ['University of Michigan', 'Lamiinae', 'winger',
'Alfred Lahti', 'ITV', 'New Orleans', 'Microsoft', 'football']
hparams = KEHyperParams.from_hparams('./hparams/KE/gpt2-xl')
editor = BaseEditor.from_hparams(hparams)
metrics, edited_model, _ = editor.edit(
prompts=prompts,
ground_truth=ground_truth,
target_new=target_new,
keep_original_weight=True
)
import pdb
pdb.set_trace()
return metrics, edited_model
def test_SERAC_Counterfacat_Train():
training_hparams = SERACTrainingHparams.from_hparams('hparams/TRAINING/SERAC')
train_ds = CounterFactDataset('data/counterfact-train.json', config=training_hparams)
eval_ds = CounterFactDataset('data/counterfact-val.json', config=training_hparams)
trainer = EditTrainer(
config=training_hparams,
train_set=train_ds,
val_set=eval_ds
)
trainer.run()
def test_SERAC_Zsre_Train():
training_hparams = SERACTrainingHparams.from_hparams('hparams/TRAINING/SERAC/llama-7b.yaml')
train_ds = ZsreDataset('data/zsre_mend_train.json', config=training_hparams)
eval_ds = ZsreDataset('data/zsre_mend_eval.json', config=training_hparams)
trainer = EditTrainer(
config=training_hparams,
train_set=train_ds,
val_set=eval_ds
)
trainer.run()
def test_SERAC_Zsre_Train_GPTJ():
training_hparams = SERACTrainingHparams.from_hparams('hparams/TRAINING/SERAC/gpt-j-6B.yaml')
train_ds = ZsreDataset('data/zsre_mend_train.json', config=training_hparams)
eval_ds = ZsreDataset('data/zsre_mend_eval.json', config=training_hparams)
trainer = EditTrainer(
config=training_hparams,
train_set=train_ds,
val_set=eval_ds
)
trainer.run()
def test_SERAC_Zsre_Train_Llama():
training_hparams = SERACTrainingHparams.from_hparams('hparams/TRAINING/SERAC/llama-7b.yaml')
train_ds = ZsreDataset('data/zsre_mend_train.json', config=training_hparams)
eval_ds = ZsreDataset('data/zsre_mend_eval.json', config=training_hparams)
trainer = EditTrainer(
config=training_hparams,
train_set=train_ds,
val_set=eval_ds
)
trainer.run()
def test_SERAC_Zsre_Train_T5():
training_hparams = SERACTrainingHparams.from_hparams('hparams/TRAINING/SERAC/t5-3B.yaml')
train_ds = ZsreDataset('data/zsre_mend_train.json', config=training_hparams)
eval_ds = ZsreDataset('data/zsre_mend_eval.json', config=training_hparams)
trainer = EditTrainer(
config=training_hparams,
train_set=train_ds,
val_set=eval_ds
)
trainer.run()
def test_SERAC():
prompts = ['BBC One, by',
'The profession of Arun Nehru is',
'Howard Glacier is located in',
'Kuala Langat, located in',
'Galata is in']
ground_truth = ['BBC',
'politician',
'Antarctica',
'Malaysia',
'Istanbul']
target_new = ['Sega',
'actor',
'Europe',
'India',
'Naples']
import json
test_data = json.load(open('data/zsre_mend_eval.json', 'r', encoding='utf-8'))
prompts = [test_data_['src'] for test_data_ in test_data[10:100]]
ground_truth = [test_data_['answers'][0] for test_data_ in test_data[10:100]]
target_new = [test_data_['alt'] for test_data_ in test_data[10:100]]
hparams = SERACHparams.from_hparams('hparams/SERAC/gpt2-xl')
editor = BaseEditor.from_hparams(hparams)
metrics, edited_model, _ = editor.edit(
prompts=prompts,
ground_truth=ground_truth,
target_new=target_new,
keep_original_weight=True
)
import pdb
pdb.set_trace()
return metrics, edited_model
def test_SERAC_T5():
import json
test_data = json.load(open('data/zsre_mend_eval.json', 'r', encoding='utf-8'))
prompts = [test_data_['src'] for test_data_ in test_data[10:100]]
ground_truth = [test_data_['answers'][0] for test_data_ in test_data[10:100]]
target_new = [test_data_['alt'] for test_data_ in test_data[10:100]]
hparams = SERACHparams.from_hparams('hparams/SERAC/t5-3B.yaml')
editor = BaseEditor.from_hparams(hparams)
metrics, edited_model, _ = editor.edit(
prompts=prompts,
ground_truth=ground_truth,
target_new=target_new,
keep_original_weight=True
)
import pdb
pdb.set_trace()
return metrics, edited_model
def test_IKE():
prompts = ['BBC One, by',
'The profession of Arun Nehru is',
'Howard Glacier is located in',
'Kuala Langat, located in',
'Galata is in']
ground_truth = ['BBC',
'politician',
'Antarctica',
'Malaysia',
'Istanbul']
target_new = ['Sega',
'actor',
'Europe',
'India',
'Naples']
hparams = IKEHyperParams.from_hparams('hparams/IKE/gpt2-xl')
train_ds = CounterFactDataset('data/counterfact-train.json')
# sentence_model = SentenceTransformer(hparams.sentence_model_name).to(f'cuda:{hparams.device}')
# encode_ike_facts(sentence_model, train_ds, hparams)
editor = BaseEditor.from_hparams(hparams)
metrics, edited_model, _ = editor.edit(
prompts=prompts,
ground_truth=ground_truth,
target_new=target_new,
train_ds=train_ds,
keep_original_weight=True
)
import pdb
pdb.set_trace()
return metrics, edited_model
def test_IKE_2():
prompts = ['Ray Charles, the',
'Grant Hill is a professional',
'The law in Ikaalinen declares the language'
]
ground_truth = ['piano',
'basketball',
'Finnish'
]
target_new = ['violin',
'soccer',
'Swedish'
]
locality_inputs = {
'neighborhood':{
'prompt': ['Joseph Fischhof, the', 'Larry Bird is a professional', 'In Forssa, they understand'],
'ground_truth': ['piano', 'basketball', 'Finnish']
},
'distracting': {
'prompt': ['Ray Charles, the violin Hauschka plays the instrument', 'Grant Hill is a professional soccer Magic Johnson is a professional', 'The law in Ikaalinen declares the language Swedish In Loviisa, the language spoken is'],
'ground_truth': ['piano', 'basketball', 'Finnish']
}
}
portability_inputs = {
'synonym':{
'prompt': ['Ray Charles, the', 'Grant Hill is a professional', 'The law in Ikalis declares the language'],
'ground_truth': ['violin', 'soccer', 'Swedish']
},
'one_hop':{
'prompt': ['Ray Charles, the', 'Grant Hill is a professional', 'The law in Ikalis declares the language'],
'ground_truth': ['violin', 'soccer', 'Swedish']
}
}
hparams = IKEHyperParams.from_hparams('hparams/IKE/gpt2-xl')
editor = BaseEditor.from_hparams(hparams)
train_ds = CounterFactDataset('data/counterfact-train.json')
metrics, edited_model, _ = editor.edit(
prompts=prompts,
ground_truth=ground_truth,
target_new=target_new,
locality_inputs=locality_inputs,
portability_inputs=portability_inputs,
train_ds=train_ds,
keep_original_weight=True
)
import pdb
pdb.set_trace()
return metrics, edited_model
def test_IKE_Llama():
prompts = ['Ray Charles, the',
'Grant Hill is a professional',
'The law in Ikaalinen declares the language'
]
ground_truth = ['piano',
'basketball',
'Finnish'
]
target_new = ['violin',
'soccer',
'Swedish'
]
locality_inputs = {
'neighborhood':{
'prompt': ['Joseph Fischhof, the', 'Larry Bird is a professional', 'In Forssa, they understand'],
'ground_truth': ['piano', 'basketball', 'Finnish']
},
'distracting': {
'prompt': ['Ray Charles, the violin Hauschka plays the instrument', 'Grant Hill is a professional soccer Magic Johnson is a professional', 'The law in Ikaalinen declares the language Swedish In Loviisa, the language spoken is'],
'ground_truth': ['piano', 'basketball', 'Finnish']
}
}
portability_inputs = {
'synonym':{
'prompt': ['Ray Charles, the', 'Grant Hill is a professional', 'The law in Ikalis declares the language'],
'ground_truth': ['violin', 'soccer', 'Swedish']
},
'one_hop':{
'prompt': ['Ray Charles, the', 'Grant Hill is a professional', 'The law in Ikalis declares the language'],
'ground_truth': ['violin', 'soccer', 'Swedish']
}
}
hparams = IKEHyperParams.from_hparams('hparams/IKE/llama-7B.yaml')
editor = BaseEditor.from_hparams(hparams)
train_ds = CounterFactDataset('data/counterfact-train.json')
metrics, edited_model, _ = editor.edit(
prompts=prompts,
ground_truth=ground_truth,
target_new=target_new,
locality_inputs=locality_inputs,
portability_inputs=portability_inputs,
train_ds=train_ds,
keep_original_weight=True
)
import pdb
pdb.set_trace()
return metrics, edited_model
def test_IKE_GPTJ():
prompts = ['Ray Charles, the',
'Grant Hill is a professional',
'The law in Ikaalinen declares the language'
]
ground_truth = ['piano',
'basketball',
'Finnish'
]
target_new = ['violin',
'soccer',
'Swedish'
]
locality_inputs = {
'neighborhood':{
'prompt': ['Joseph Fischhof, the', 'Larry Bird is a professional', 'In Forssa, they understand'],
'ground_truth': ['piano', 'basketball', 'Finnish']
},
'distracting': {
'prompt': ['Ray Charles, the violin Hauschka plays the instrument', 'Grant Hill is a professional soccer Magic Johnson is a professional', 'The law in Ikaalinen declares the language Swedish In Loviisa, the language spoken is'],
'ground_truth': ['piano', 'basketball', 'Finnish']
}
}
portability_inputs = {
'synonym':{
'prompt': ['Ray Charles, the', 'Grant Hill is a professional', 'The law in Ikalis declares the language'],
'ground_truth': ['violin', 'soccer', 'Swedish']
},
'one_hop':{
'prompt': ['Ray Charles, the', 'Grant Hill is a professional', 'The law in Ikalis declares the language'],
'ground_truth': ['violin', 'soccer', 'Swedish']
}
}
hparams = IKEHyperParams.from_hparams('hparams/IKE/gpt-j-6B')
editor = BaseEditor.from_hparams(hparams)
train_ds = CounterFactDataset('data/counterfact-train.json')
metrics, edited_model, _ = editor.edit(
prompts=prompts,
ground_truth=ground_truth,
target_new=target_new,
locality_inputs=locality_inputs,
portability_inputs=portability_inputs,
train_ds=train_ds,
keep_original_weight=True
)
import pdb
pdb.set_trace()
return metrics, edited_model
def test_MEND_Meta_Train_Llama():
training_hparams = MENDTrainingHparams.from_hparams('hparams/TRAINING/MEND/llama-7b.yaml')
train_ds = ZsreDataset('data/zsre_mend_train.json', config=training_hparams)
eval_ds = ZsreDataset('data/zsre_mend_eval.json', config=training_hparams)
trainer = EditTrainer(
config=training_hparams,
train_set=train_ds,
val_set=eval_ds
)
trainer.run()
def test_MEND_Meta_Train_GPTJ():
training_hparams = MENDTrainingHparams.from_hparams('hparams/TRAINING/MEND/gpt-j-6B.yaml')
train_ds = ZsreDataset('data/zsre_mend_train.json', config=training_hparams)
eval_ds = ZsreDataset('data/zsre_mend_eval.json', config=training_hparams)
trainer = EditTrainer(
config=training_hparams,
train_set=train_ds,
val_set=eval_ds
)
trainer.run()
def test_MEND_Llama():
# prompts = ['What university did Watts Humphrey attend?', 'Which family does Ramalinaceae belong to',
# 'What role does Denny Herzig play in football?', 'Who was the designer of Lahti Town Hall?',
# 'What is the original channel that It\'s a Business played on?', 'What city did Marl Young live when he died?',
# 'Steve Jobs was the founder of', 'LeBron James plays the sport of', 'The manufacturer of Colt King Cobra was who']
# ground_truth = ['Illinois Institute of Technology', 'Lecanorales', 'defender',
# 'Eliel Saarinen', 'DuMont Television Network', 'Los Angeles', 'Apple', 'basketball', 'Colt\'s Manufacturing Company']
# target_new = ['University of Michigan', 'Lamiinae', 'winger',
# 'Alfred Lahti', 'ITV', 'New Orleans', 'Microsoft', 'football', 'Colt\'s Manufacturing Corporation']
prompts = ['Which family does Ramalinaceae belong to',
'What role does Denny Herzig play in football?', 'Who was the designer of Lahti Town Hall?',
'What is the original channel that It\'s a Business played on?', 'What city did Marl Young live when he died?',
'Steve Jobs was the founder of', 'LeBron James plays the sport of', 'The manufacturer of Colt King Cobra was who']
ground_truth = ['Lecanorales', 'defender',
'Eliel Saarinen', 'DuMont Television Network', 'Los Angeles', 'Apple', 'basketball', 'Colt\'s Manufacturing Company']
target_new = ['Lamiinae', 'winger',
'Alfred Lahti', 'ITV', 'New Orleans', 'Microsoft', 'football', 'Colt\'s Manufacturing Corporation']
hparams = MENDHyperParams.from_hparams('hparams/MEND/llama-7b.yaml')
editor = BaseEditor.from_hparams(hparams)
metrics, edited_model, _ = editor.edit(
prompts=prompts,
ground_truth=ground_truth,
target_new=target_new,
keep_original_weight=True
)
import pdb
pdb.set_trace()
return metrics, edited_model
def test_MEND_GPTJ():
# prompts = ['What university did Watts Humphrey attend?', 'Which family does Ramalinaceae belong to',
# 'What role does Denny Herzig play in football?', 'Who was the designer of Lahti Town Hall?',
# 'What is the original channel that It\'s a Business played on?', 'What city did Marl Young live when he died?',
# 'Steve Jobs was the founder of', 'LeBron James plays the sport of', 'The manufacturer of Colt King Cobra was who']
# ground_truth = ['Illinois Institute of Technology', 'Lecanorales', 'defender',
# 'Eliel Saarinen', 'DuMont Television Network', 'Los Angeles', 'Apple', 'basketball', 'Colt\'s Manufacturing Company']
# target_new = ['University of Michigan', 'Lamiinae', 'winger',
# 'Alfred Lahti', 'ITV', 'New Orleans', 'Microsoft', 'football', 'Colt\'s Manufacturing Corporation']
prompts = ['Which family does Ramalinaceae belong to',
'What role does Denny Herzig play in football?', 'Who was the designer of Lahti Town Hall?',
'What is the original channel that It\'s a Business played on?', 'What city did Marl Young live when he died?',
'Steve Jobs was the founder of', 'LeBron James plays the sport of', 'The manufacturer of Colt King Cobra was who']
ground_truth = ['Lecanorales', 'defender',
'Eliel Saarinen', 'DuMont Television Network', 'Los Angeles', 'Apple', 'basketball', 'Colt\'s Manufacturing Company']
target_new = ['Lamiinae', 'winger',
'Alfred Lahti', 'ITV', 'New Orleans', 'Microsoft', 'football', 'Colt\'s Manufacturing Corporation']
hparams = MENDHyperParams.from_hparams('hparams/MEND/gpt-j-6B.yaml')
editor = BaseEditor.from_hparams(hparams)
metrics, edited_model, _ = editor.edit(
prompts=prompts,
ground_truth=ground_truth,
target_new=target_new,
keep_original_weight=True
)
import pdb
pdb.set_trace()
return metrics, edited_model
def test_MEND_T5():
# prompts = ['What university did Watts Humphrey attend?', 'Which family does Ramalinaceae belong to',
# 'What role does Denny Herzig play in football?', 'Who was the designer of Lahti Town Hall?',
# 'What is the original channel that It\'s a Business played on?', 'What city did Marl Young live when he died?',
# 'Steve Jobs was the founder of', 'LeBron James plays the sport of', 'The manufacturer of Colt King Cobra was who']
# ground_truth = ['Illinois Institute of Technology', 'Lecanorales', 'defender',
# 'Eliel Saarinen', 'DuMont Television Network', 'Los Angeles', 'Apple', 'basketball', 'Colt\'s Manufacturing Company']
# target_new = ['University of Michigan', 'Lamiinae', 'winger',
# 'Alfred Lahti', 'ITV', 'New Orleans', 'Microsoft', 'football', 'Colt\'s Manufacturing Corporation']
prompts = ['Which family does Ramalinaceae belong to',
'What role does Denny Herzig play in football?', 'Who was the designer of Lahti Town Hall?',
'What is the original channel that It\'s a Business played on?', 'What city did Marl Young live when he died?',
'Steve Jobs was the founder of', 'LeBron James plays the sport of', 'The manufacturer of Colt King Cobra was who']
ground_truth = ['Lecanorales', 'defender',
'Eliel Saarinen', 'DuMont Television Network', 'Los Angeles', 'Apple', 'basketball', 'Colt\'s Manufacturing Company']
target_new = ['Lamiinae', 'winger',
'Alfred Lahti', 'ITV', 'New Orleans', 'Microsoft', 'football', 'Colt\'s Manufacturing Corporation']
hparams = MENDHyperParams.from_hparams('hparams/MEND/t5-3B.yaml')
editor = BaseEditor.from_hparams(hparams)
metrics, edited_model, _ = editor.edit(
prompts=prompts,
ground_truth=ground_truth,
target_new=target_new,
keep_original_weight=True
)
import pdb
pdb.set_trace()
return metrics, edited_model
def test_ROME_GPTJ():
prompts = ['What university did Watts Humphrey attend?', 'Which family does Ramalinaceae belong to',
'What role does Denny Herzig play in football?', 'Who was the designer of Lahti Town Hall?',
'What is the original channel that It\'s a Business played on?', 'What city did Marl Young live when he died?']
ground_truth = ['Illinois Institute of Technology', 'Lecanorales', 'defender',
'Eliel Saarinen', 'DuMont Television Network', 'Los Angeles']
target_new = ['University of Michigan', 'Lamiinae', 'winger',
'Alfred Lahti', 'ITV', 'New Orleans']
subject = ['Watts Humphrey', 'Ramalinaceae', 'Denny Herzig',
'Lahti Town Hall', 'It\'s a Business', 'Marl Young']
hparams = ROMEHyperParams.from_hparams('hparams/ROME/gpt-j-6B')
editor = BaseEditor.from_hparams(hparams)
metrics, edited_model, _ = editor.edit(
prompts=prompts,
ground_truth=ground_truth,
target_new=target_new,
subject=subject,
keep_original_weight=True
)
import pdb
pdb.set_trace()
return metrics, edited_model
def test_MEMIT_GPTJ():
prompts = ['Ray Charles, the',
'Grant Hill is a professional',
'The law in Ikaalinen declares the language'
]
ground_truth = ['piano',
'basketball',
'Finnish'
]
target_new = ['violin',
'soccer',
'Swedish'
]
subject = ['Ray Charles',
'Grant Hill',
'Ikaalinen'
]
locality_inputs = {
'neighborhood':{
'prompt': ['Joseph Fischhof, the', 'Larry Bird is a professional', 'In Forssa, they understand'],
'ground_truth': ['piano', 'basketball', 'Finnish']
},
'distracting': {
'prompt': ['Ray Charles, the violin Hauschka plays the instrument', 'Grant Hill is a professional soccer Magic Johnson is a professional', 'The law in Ikaalinen declares the language Swedish In Loviisa, the language spoken is'],
'ground_truth': ['piano', 'basketball', 'Finnish']
}
}
portability_inputs = {
'synonym':{
'prompt': ['Ray Charles, the', 'Grant Hill is a professional', 'The law in Ikalis declares the language'],
'ground_truth': ['violin', 'soccer', 'Swedish']
},
'one_hop':{
'prompt': ['Ray Charles, the', 'Grant Hill is a professional', 'The law in Ikalis declares the language'],
'ground_truth': ['violin', 'soccer', 'Swedish']
}
}
hparams = MEMITHyperParams.from_hparams('hparams/MEMIT/gpt-j-6B')
editor = BaseEditor.from_hparams(hparams)
metrics, edited_model, _ = editor.edit(
prompts=prompts,
ground_truth=ground_truth,
target_new=target_new,
subject=subject,
locality_inputs=locality_inputs,
portability_inputs=portability_inputs,
keep_original_weight=True
)
import pdb
pdb.set_trace()
return metrics, edited_model
def test_KE_GPTJ():
prompts = ['Who is the architect for Toodyay Fire Station?', 'Who is Claire Clairmont\'s sister?',
'Which fictional universe is Chlorophyll Kid part of?']
ground_truth = ['Ken Duncan', 'Mary Shelley', 'DC Universe']
target_new = ['Wong Tung & Sons', 'Clairmont-Mayer', 'Image Universe']
hparams = KEHyperParams.from_hparams('./hparams/KE/gpt-j-6B.yaml')
editor = BaseEditor.from_hparams(hparams)
metrics, edited_model, _ = editor.edit(
prompts=prompts + prompts,
ground_truth=ground_truth + ground_truth,
target_new=target_new + target_new,
keep_original_weight=True,
)
return metrics, edited_model
def test_FT_T5():
prompts = ['Ray Charles, the',
'Grant Hill is a professional',
'The law in Ikaalinen declares the language'
]
ground_truth = ['piano',
'basketball',
'Finnish'
]
target_new = ['violin',
'soccer',
'Swedish'
]
hparams = FTHyperParams.from_hparams('hparams/FT/t5-3B.yaml')
editor = BaseEditor.from_hparams(hparams)
metrics, edited_model, _ = editor.edit(
prompts=prompts + prompts,
ground_truth=ground_truth + ground_truth,
target_new=target_new + target_new,
keep_original_weight=True
)
import pdb
pdb.set_trace()
return metrics, edited_model
def test_IKE_T5():
prompts = ['Ray Charles, the',
'Grant Hill is a professional',
'The law in Ikaalinen declares the language'
]
ground_truth = ['piano',
'basketball',
'Finnish'
]
target_new = ['violin',
'soccer',
'Swedish'
]
locality_inputs = {
'neighborhood':{
'prompt': ['Joseph Fischhof, the', 'Larry Bird is a professional', 'In Forssa, they understand'],
'ground_truth': ['piano', 'basketball', 'Finnish']
},
'distracting': {
'prompt': ['Ray Charles, the violin Hauschka plays the instrument', 'Grant Hill is a professional soccer Magic Johnson is a professional', 'The law in Ikaalinen declares the language Swedish In Loviisa, the language spoken is'],
'ground_truth': ['piano', 'basketball', 'Finnish']
}
}
portability_inputs = {
'synonym':{
'prompt': ['Ray Charles, the', 'Grant Hill is a professional', 'The law in Ikalis declares the language'],
'ground_truth': ['violin', 'soccer', 'Swedish']
},
'one_hop':{
'prompt': ['Ray Charles, the', 'Grant Hill is a professional', 'The law in Ikalis declares the language'],
'ground_truth': ['violin', 'soccer', 'Swedish']
}
}
hparams = IKEHyperParams.from_hparams('hparams/IKE/t5-3B.yaml')
editor = BaseEditor.from_hparams(hparams)
train_ds = CounterFactDataset('data/counterfact-train.json')
metrics, edited_model, _ = editor.edit(
prompts=prompts,
ground_truth=ground_truth,
target_new=target_new,
locality_inputs=locality_inputs,
portability_inputs=portability_inputs,
train_ds=train_ds,
keep_original_weight=True
)
import pdb
pdb.set_trace()
return metrics, edited_model