Skip to content

Latest commit

 

History

History
156 lines (118 loc) · 6.44 KB

README.md

File metadata and controls

156 lines (118 loc) · 6.44 KB

Collaborative Computerized Adaptive Testing for Ranking

Requirements

To install requirements:

pip install -r requirements.txt

Data Preprocessing

!!!The preprocessing data is provided in Supplementary_material, which means you can skip this step.

To get the dataset used in experiments, you can use Edudata package.

edudata download NIPS-2020
edudata download junyi

Deconstruct the downloaded data as follows:

data/
│
├── NIPS2020/
│   ├── train_task_3_4.csv
│   └── meta_data.csv
│
├── JUNYI/
│   ├── junyi_ProblemLog_original.csv
│   └── junyi_Exercise_table.csv
│
└── dataset.py
│
└── mcmc.py
│
└── prepare_data.py
│
└── setting.py

To preprocessing the dataset,run:

cd data
python prepare_data.py --data_name='NIPS2020'
python prepare_data.py --data_name='JUNYI'

📋 prepare_data.py will delete students with less than 50 answering records, as well as delete questions with less than 50 answering times. The dataset will be divided into a training set (collaborative students) and a testing set (tested students) in a 4:1 ratio. The outputs of prepare_data.py are train_triples.csv, test_triples.csv, triples.csv, metadata.json, concept_map.json.

Dataset NIPS-EDU(NIPS2020) JUNYI
#Students 4,914 8,852
#Questions 900 702
#Response logs 1,382,173 801,270
#Response logs per student 281.27 90.52
#Response logs per question 1,535.75 1,141.41

To get the parameter of IRT: estimated by mcmc method, run:

python mcmc.py --data_name='NIPS2020'

📋 mcmc.py will use Monte Carlo sampling on the dataset to perform posterior estimation on the IRT model, in order to obtain the parameters of the IRT model. The outputs are alpha.npy and beta.npy, which contains the discrimination and difficulty of questions.

After the data preprocess, the fold becomes(which is provided):

data/
│
├── NIPS2020/
│   ├── alpha.npy
│   ├── beta.npy
│   ├── concept_map.json
│   ├── metadata.json
│   ├── test_triples.csv
│   ├── train_triples.csv
│   └── triples.csv
│
├── JUNYI/
│	├── alpha.npy
│   ├── beta.npy
│   ├── concept_map.json
│   ├── metadata.json
│   ├── test_triples.csv
│   ├── train_triples.csv
│   └── triples.csv

To preprocessing the dataset,run:

Evaluation

To evaluate my model, run:

python main.py --method='ccat' --irt_method='mcmc' --data_name='NIPS2020' --seed=2024 --device='cuda'

📋 main.py contains code for selecting questions and evaluating ranking consistency.

This includes the following hyperparameters:

method can choose the selection strategy of CAT, including random, fsi, kli, maat, ncat, becat, ccat.

irt_method controls the training method of the irt model, including mcmc and gd.

data_name is the dataset used in the experiment, including NIPS2020 and JUNYI.

seed controls the initialization parameters of student abilities, and the seed used in the article is 2023, 2024, 2025, 2026, 2027.

Results

Our model achieves the following performance on :

Intra Ranking Consistency(MCMC)

NIPS2020 Step 5 Step 10 Step 15 Step 20
Random 0.7411/0.7531 0.8061/0.8084 0.8348/0.8363 0.8540/0.8547
FSI 0.7912/0.7933 0.8570/0.8573 0.8846/0.8848 0.8975/0.8977
KLI 0.7821/0.7839 0.8532/0.8530 0.8804/0.8805 0.8965/0.8966
MAAT 0.6762/0.6909 0.8083/0.8090 0.8588/0.8595 0.8843/0.8848
NCAT 0.7766/0.7923 0.8451/0.8501 0.8710/0.8725 0.8831/0.8840
BECAT 0.7685/0.7680 0.8441/0.8449 0.8766/0.8771 0.8958/0.8961
CCAT 0.7982/0.8149 0.8561/0.8635 0.8832/0.8851 0.8955/0.8969

📋 The results in each grid are evaluated using IRT on the left and CCAT on the right, respectively.

Inter Ranking Consistency

NIPS2020 Step 5 Step 10 Step 15 Step 20
Random 0.7798 0.8325 0.8590 0.8760
FSI 0.8258 0.8785 0.9013 0.9126
KLI 0.8195 0.8758 0.8985 0.9119
MAAT 0.7242 0.8373 0.8807 0.9023
NCAT 0.8286 0.8697 0.8892 0.8994
BECAT 0.8045 0.8676 0.8948 0.9104
CCAT 0.8476 0.8839 0.9013 0.9116

ACC/AUC

Contributing

📋 We use the MIT License.