-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathselection_strategy.py
521 lines (486 loc) · 22.1 KB
/
selection_strategy.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
# -*- coding: utf-8 -*-
import torch
import random
import numpy as np
import scipy
import copy as cp
from tqdm import tqdm
from collections import defaultdict
from NCAT.NCAT import NCAT
def IRT(x,a,b):
return 1/(1+np.exp(-a*(x-b)))
def Likelihood(x,y,a,b):
return (a*(y-1/(1+np.exp(-a*(x-b))))).sum()
class MCMC_Selection(object):
def __init__(self,train_data,test_data,concept_map,train_label,test_label,gamma,beta,params):
self.device = torch.device("cuda") if params.device=='cuda' else torch.device("cuda")
self.train_data = train_data
self.test_data = test_data
self.concept_map = concept_map
self.train_label = train_label
self.test_label = test_label
self.gamma = gamma
self.beta = beta
self.ga = torch.FloatTensor(gamma).to(self.device)
self.be = torch.FloatTensor(beta).to(self.device)
self.params = params
if self.params.method == 'ncat':
self.model = NCAT(train_data.num_questions+1,256,1,0.1).to(self.device)
self.model.load_state_dict(torch.load('model/'+self.params.data_name+"/mcmc/best_model.pth"))
self.model.eval()
#IRT prob
def P(self, theta):
return 1/(1+torch.exp(-self.ga*(theta-self.be)))
#CCAT method
def get_ccat(self,selected,theta,stu):
with torch.no_grad():
Pt = self.P(theta)
Ptheta = torch.sigmoid((self.ga*(self.train_label-self.test_label[stu])*selected).sum(-1)).reshape(-1,1)
F = self.ga*(Ptheta*(1-Pt)*self.train_label+(1-Ptheta)*Pt*(1-self.train_label))
return F.sum(0).data.cpu().numpy()
#FSI
def get_Fisher(self,theta):
with torch.no_grad():
Pt=self.P(theta)
F = self.ga*self.ga*Pt*(1-Pt)
return F.data.cpu().numpy()
#KLI
def get_kli(self,theta,untested,n):
if n == 0:
return np.random.choice(untested)
max=0
max_index=-1
for i in untested:
a=self.gamma[i]
b=self.beta[i]
pred_estimate = IRT(theta,a,b)
def kli(x):
pred = a*(x-b)
pred = 1 / (1 + np.exp(-pred))
q_estimate = 1 - pred_estimate
q = 1 - pred
return pred_estimate * np.log(pred_estimate / pred) + \
q_estimate * np.log((q_estimate / q))
c = 3
boundaries = [[theta - c / np.sqrt(n), theta + c / np.sqrt(n)]]
v, err = scipy.integrate.quad(kli, boundaries[0][0], boundaries[0][1])
if v>max:
max=v
max_index=i
return max_index
#MAAT
def get_maat(self,theta,untested,a,b,labels):
with torch.no_grad():
Pt=self.P(theta)
emcs = np.zeros(self.test_data.num_questions)-1
for q in untested:
a_m=a+[self.gamma[q]]
b_m=b+[self.beta[q]]
emc = 0
for l in range(2):
labels_m=labels+[l]
x = scipy.optimize.root(Likelihood, 0,args=(np.array(labels_m),np.array(a_m),np.array(b_m))).x[0]
if x>4:
x=4
if x<-4:
x=-4
emc += (Pt[q]*l+(1-Pt[q])*(1-l))*np.abs(x-theta)
emcs[q] = emc
q_list = np.argsort(emcs)[::-1][:20]
return q_list
def IWKC(self,selected):
WKC = defaultdict(int)
for q in selected:
if q in self.concept_map:
kcs = self.concept_map[q]
if isinstance(kcs, int):
WKC[kcs]+=1
else:
for kc in kcs:
WKC[kc]+=1
return sum([cnt/(cnt+1) for cnt in WKC.values()])
#NCAT
def get_ncat(self,batch_0_question,batch_1_question,p_0_t,p_1_t):
data = {"p_0_rec": batch_0_question,"p_1_rec": batch_1_question,\
"p_0_t": p_0_t, "p_1_t":p_1_t}
return self.model.predict(data)[:,1:].cpu().detach().numpy()
#BECAT
def bce_loss_derivative(self,pred, target):
""" get bce_loss_derivative
Args:
pred: float,
target: int,
Returns:
the derivative of bce_loss
"""
derivative = (pred - target) / (pred * (1 - pred))
return derivative
def get_BE_weights(self,pred_all,ga):
""" get BE matrix
Args:
pred_all: dict, the questions you want to sample and their probability
Returns:
the BE matrix weights
"""
d = 100
Pre_true = pred_all
Pre_false = 1- pred_all
Der = pred_all*(1-pred_all)*ga
gradients_theta1 = self.bce_loss_derivative(Pre_true,0.0)*Der
gradients_theta2 = self.bce_loss_derivative(Pre_true,1.0)*Der
diff_norm_00 = torch.abs((Pre_false*gradients_theta1).reshape(1,-1)-(Pre_false*gradients_theta1).reshape(-1,1))
diff_norm_01 = torch.abs((Pre_false*gradients_theta1).reshape(1,-1)-(Pre_true*gradients_theta2).reshape(-1,1))
diff_norm_10 = torch.abs((Pre_true*gradients_theta2).reshape(1,-1)-(Pre_false*gradients_theta1).reshape(-1,1))
diff_norm_11 = torch.abs((Pre_true*gradients_theta2).reshape(1,-1)-(Pre_true*gradients_theta2).reshape(-1,1))
Expect = diff_norm_00 + diff_norm_01 + diff_norm_10 + diff_norm_11
return d-Expect
def F_s_func(self,Sp_set,w_ij_matrix,sampled_elements):
""" get F_s of the questions have been chosen
Args:
S_set:list , the questions have been chosen
w_ij_matrix: dict, the weight matrix
Returns:
the F_s of the chosen questions
"""
res = 0.0
for i in range(len(sampled_elements)):
q = sampled_elements[i]
if (q not in sampled_elements[Sp_set]):
mx = 0
for j in Sp_set:
if w_ij_matrix[i][j]> mx:
mx = w_ij_matrix[i][j]
res += mx
return res
def delta_q_S_t(self,question_id, pred_all,S_set,sampled_elements):
""" get BECAT Questions weights delta
Args:
question_id: int, question id
pred_all:dict, the untest questions and their probability
S_set:dict, chosen questions
sampled_elements:nparray, sampled set from untest questions
Returns:
delta_q: float, delta_q of questions id
"""
Sp_set = (-1-np.arange(len(S_set)))
b_array = np.array(S_set)
sampled_elements = np.concatenate((sampled_elements, b_array), axis=0)
if question_id not in sampled_elements:
sampled_elements = np.append(sampled_elements, question_id)
Sp_set = Sp_set -1
Sp_set = list(Sp_set)[::-1]
sampled_dict = pred_all[sampled_elements]
w_ij_matrix = self.get_BE_weights(sampled_dict,self.ga[sampled_elements])
F_s = self.F_s_func(Sp_set,w_ij_matrix,sampled_elements)
Sp_set.append(np.argwhere(sampled_elements==question_id)[0][0])
F_sp = self.F_s_func(Sp_set,w_ij_matrix,sampled_elements)
return F_sp - F_s
def get_becat(self,selected,untested,theta):
Pt = self.P(theta)
tmplen = len(selected)
sampled_elements = np.random.choice(untested,tmplen+5)
untested_deltaq = [self.delta_q_S_t(qid,Pt,selected,sampled_elements).item() for qid in untested]
q = untested[np.argmax(untested_deltaq)]
return q
#select question for students
def get_question(self):
selected_questions = []
stu_theta=[]
np.random.seed(self.params.seed)
random.seed(self.params.seed)
for stu in tqdm(range(self.test_data.num_students)):
a=[]
b=[]
labels=[]
theta = []
#initial student's ability
x = np.random.randn(1)[0]
selected_question = []
unselected_set = set(torch.where(self.test_label[stu]>=0)[0].cpu().numpy())
selected = torch.zeros(self.test_data.num_questions).to(self.device)
if self.params.method=='ncat':
batch_0_question = np.zeros([1,21])
batch_1_question = np.zeros([1,21])
p_0_t = np.ones(1).astype('int')
p_1_t = np.ones(1).astype('int')
#each step t,select one question for student to answer
for i in range(20):
if self.params.method=='ccat':
F=self.get_ccat(selected,x,stu)
unselected_questions = list(unselected_set)
q=unselected_questions[np.argmax(F[list(unselected_set)])]
if self.params.method=='fsi':
F=self.get_Fisher(x)
unselected_questions = list(unselected_set)
q=unselected_questions[np.argmax(F[list(unselected_set)])]
if self.params.method=='kli':
q=self.get_kli(x,list(unselected_set),i)
if self.params.method=='random':
q=random.choice(list(unselected_set))
if self.params.method=='maat':
q_list=self.get_maat(x,list(unselected_set),a,b,labels)
q = q_list[np.argmax([self.IWKC(selected_question+[q]) for q in q_list])]
if self.params.method=='ncat':
Q = self.get_ncat(batch_0_question,batch_1_question,p_0_t,p_1_t)
unselected_questions = list(unselected_set)
q = unselected_questions[np.argmax(Q[0][unselected_questions])]
if self.test_data.data[stu][q]==0:
batch_0_question[0][p_0_t[0]]= q+1
p_0_t[0] += 1
else:
batch_1_question[0][p_1_t[0]]= q+1
p_1_t[0] += 1
if self.params.method == 'becat':
q = self.get_becat(selected_question,list(unselected_set),x)
a.append(self.gamma[q])
b.append(self.beta[q])
#get the answer for question q
labels.append(self.test_data.data[stu][q])
selected[q] = 1
#estimate student's ability
x = scipy.optimize.root(Likelihood, x,args=(np.array(labels),np.array(a),np.array(b))).x[0]
if x>4:
x=4
if x<-4:
x=-4
selected_question.append(q)
unselected_set.remove(q)
theta.append(x)
selected_questions.append(selected_question)
stu_theta.append(theta)
return selected_questions, stu_theta
class GD_Selection(object):
def __init__(self,train_data,test_data,concept_map,train_label,test_label,irt_model,params):
self.device = torch.device("cuda") if params.device=='cuda' else torch.device("cuda")
self.train_data = train_data
self.test_data = test_data
self.concept_map = concept_map
self.train_label = train_label
self.test_label = test_label
self.params = params
self.irt = irt_model
self.ga = irt_model.alpha.data.flatten()
self.be = irt_model.beta.data.flatten()
if self.params.method == 'ncat':
self.model = NCAT(train_data.num_questions+1,256,1,0.1).to(self.device)
self.model.load_state_dict(torch.load('model/'+self.params.data_name+"/gd/best_model.pth"))
self.model.eval()
#IRT method
def P(self, theta):
return 1/(1+torch.exp(-self.ga*(theta-self.be)))
#CCAT
def get_ccat(self,selected,theta,stu):
with torch.no_grad():
Pt = self.P(theta)
Ptheta = torch.sigmoid((self.ga*(self.train_label-self.test_label[stu])*selected).sum(-1)).reshape(-1,1)
F = self.ga*(Ptheta*(1-Pt)*self.train_label+(1-Ptheta)*Pt*(1-self.train_label))
return F.sum(0).data.cpu().numpy()
#FSI
def get_Fisher(self,theta):
with torch.no_grad():
Pt=self.P(theta)
F = self.ga*self.ga*Pt*(1-Pt)
return F.data.cpu().numpy()
#KLI
def get_kli(self,theta,untested,n):
if n == 0:
return np.random.choice(untested)
max=-np.inf
max_index=-1
pred_estimates = self.P(theta)
for i in untested:
a=self.ga[i].item()
b=self.be[i].item()
pred_estimate = pred_estimates[i].item()
def kli(x):
pred = a*(x-b)
pred = 1 / (1 + np.exp(-pred))
q_estimate = 1 - pred_estimate
q = 1 - pred
return pred_estimate * np.log(pred_estimate / pred) + \
q_estimate * np.log((q_estimate / q))
c = 3
boundaries = [[theta - c / np.sqrt(n), theta + c / np.sqrt(n)]]
v, err = scipy.integrate.quad(kli, boundaries[0][0], boundaries[0][1])
if v>max:
max=v
max_index=i
return max_index
#MAAT
def get_maat(self,theta,untested,selected,stu):
irt_maat = cp.deepcopy(self.irt)
#with torch.no_grad():
Pt = self.P(theta)
emcs = np.zeros(self.test_data.num_questions)-1
label = cp.deepcopy(self.test_label[stu])
theta_s = cp.deepcopy(irt_maat.n_students)
for q in untested:
select = cp.deepcopy(selected)
select[q] = 1
emc = 0
for l in range(2):
label[q] = l
irt_maat.n_students = cp.deepcopy(theta_s)
irt_maat.get_maat(torch.where(select==1)[0],label)
x = irt_maat.n_students[0][0].item()
emc += (Pt[q]*l+(1-Pt[q])*(1-l))*np.abs(x-theta_s[0][0].item())
emcs[q] = emc
q_list = np.argsort(emcs)[::-1][:20]
return q_list
def IWKC(self,selected):
WKC = defaultdict(int)
for q in selected:
if q in self.concept_map:
kcs = self.concept_map[q]
if isinstance(kcs, int):
WKC[kcs]+=1
else:
for kc in kcs:
WKC[kc]+=1
return sum([cnt/(cnt+1) for cnt in WKC.values()])
#BECAT
def get_ncat(self,batch_0_question,batch_1_question,p_0_t,p_1_t):
data = {"p_0_rec": batch_0_question,"p_1_rec": batch_1_question,\
"p_0_t": p_0_t, "p_1_t":p_1_t}
return self.model.predict(data)[:,1:].cpu().detach().numpy()
#BECAT
def bce_loss_derivative(self,pred, target):
""" get bce_loss_derivative
Args:
pred: float,
target: int,
Returns:
the derivative of bce_loss
"""
derivative = (pred - target) / (pred * (1 - pred))
return derivative
def get_BE_weights(self,pred_all,ga):
""" get BE matrix
Args:
pred_all: dict, the questions you want to sample and their probability
Returns:
the BE matrix weights
"""
d = 100
Pre_true = pred_all
Pre_false = 1- pred_all
Der = pred_all*(1-pred_all)*ga
gradients_theta1 = self.bce_loss_derivative(Pre_true,0.0)*Der
gradients_theta2 = self.bce_loss_derivative(Pre_true,1.0)*Der
diff_norm_00 = torch.abs((Pre_false*gradients_theta1).reshape(1,-1)-(Pre_false*gradients_theta1).reshape(-1,1))
diff_norm_01 = torch.abs((Pre_false*gradients_theta1).reshape(1,-1)-(Pre_true*gradients_theta2).reshape(-1,1))
diff_norm_10 = torch.abs((Pre_true*gradients_theta2).reshape(1,-1)-(Pre_false*gradients_theta1).reshape(-1,1))
diff_norm_11 = torch.abs((Pre_true*gradients_theta2).reshape(1,-1)-(Pre_true*gradients_theta2).reshape(-1,1))
Expect = diff_norm_00 + diff_norm_01 + diff_norm_10 + diff_norm_11
return d-Expect
def F_s_func(self,Sp_set,w_ij_matrix,sampled_elements):
""" get F_s of the questions have been chosen
Args:
S_set:list , the questions have been chosen
w_ij_matrix: dict, the weight matrix
Returns:
the F_s of the chosen questions
"""
res = torch.zeros(1).to(self.device)
for i in range(len(sampled_elements)):
q = sampled_elements[i]
#print(sampled_elements[Sp_set])
if (q not in sampled_elements[Sp_set]):
mx = 0
for j in Sp_set:
if w_ij_matrix[i][j]> mx:
mx = w_ij_matrix[i][j]
res += mx
return res
def delta_q_S_t(self,question_id, pred_all,S_set,sampled_elements):
""" get BECAT Questions weights delta
Args:
question_id: int, question id
pred_all:dict, the untest questions and their probability
S_set:dict, chosen questions
sampled_elements:nparray, sampled set from untest questions
Returns:
delta_q: float, delta_q of questions id
"""
Sp_set = (-1-np.arange(len(S_set)))
b_array = np.array(S_set)
sampled_elements = np.concatenate((sampled_elements, b_array), axis=0)
if question_id not in sampled_elements:
sampled_elements = np.append(sampled_elements, question_id)
Sp_set = Sp_set -1
Sp_set = list(Sp_set)[::-1]
sampled_dict = pred_all[sampled_elements]
w_ij_matrix = self.get_BE_weights(sampled_dict,self.ga[sampled_elements])
F_s = self.F_s_func(Sp_set,w_ij_matrix,sampled_elements)
Sp_set.append(np.argwhere(sampled_elements==question_id)[0][0])
F_sp = self.F_s_func(Sp_set,w_ij_matrix,sampled_elements)
return F_sp - F_s
def get_becat(self,selected,untested,theta):
Pt = self.P(theta)
tmplen = len(selected)
sampled_elements = np.random.choice(untested,tmplen+5)
untested_deltaq = [self.delta_q_S_t(qid,Pt,selected,sampled_elements).item() for qid in untested]
q = untested[np.argmax(untested_deltaq)]
return q
#select question for students
def get_question(self):
selected_questions = []
stu_theta=[]
np.random.seed(self.params.seed)
random.seed(self.params.seed)
self.irt.alpha.requires_grad = False
self.irt.beta.requires_grad = False
for stu in tqdm(range(self.test_data.num_students)):
self.irt.n_students.data = torch.zeros([self.train_data.num_students,1]).to(self.device)
theta = []
#initial student's ability
x = np.random.randn(1)[0]
selected_question = []
unselected_set = set(torch.where(self.test_label[stu]>=0)[0].cpu().numpy())
selected = torch.zeros(self.test_data.num_questions).to(self.device)
if self.params.method=='ncat':
batch_0_question = np.zeros([1,21])
batch_1_question = np.zeros([1,21])
p_0_t = np.ones(1).astype('int')
p_1_t = np.ones(1).astype('int')
#for each step t, select one question for student to answer
for i in range(20):
if self.params.method=='ccat':
#F=get_Rank(train_label,x)
F=self.get_ccat(selected,x,stu)
unselected_questions = list(unselected_set)
q=unselected_questions[np.argmax(F[list(unselected_set)])]
if self.params.method=='fsi':
F=self.get_Fisher(x)
unselected_questions = list(unselected_set)
q=unselected_questions[np.argmax(F[list(unselected_set)])]
if self.params.method=='kli':
q=self.get_kli(x,list(unselected_set),i)
if self.params.method=='random':
q=random.choice(list(unselected_set))
if self.params.method=='maat':
q_list=self.get_maat(x,list(unselected_set),selected,stu)
q = q_list[np.argmax([self.IWKC(selected_question+[q]) for q in q_list])]
if self.params.method=='ncat':
Q = self.get_ncat(batch_0_question,batch_1_question,p_0_t,p_1_t)
unselected_questions = list(unselected_set)
q = unselected_questions[np.argmax(Q[0][unselected_questions])]
if self.test_data.data[stu][q]==0:
batch_0_question[0][p_0_t[0]]= q+1
p_0_t[0] += 1
else:
batch_1_question[0][p_1_t[0]]= q+1
p_1_t[0] += 1
if self.params.method == 'becat':
q = self.get_becat(selected_question,list(unselected_set),x)
selected[q] = 1
selected_question.append(q)
unselected_set.remove(q)
#estimate student's ability
self.irt.optim(torch.where(selected==1)[0],self.test_label[stu])
x = self.irt.get_theta()
#get student's current ability
theta.append(x)
selected_questions.append(selected_question)
stu_theta.append(theta)
return selected_questions, stu_theta