-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathapp.py
142 lines (116 loc) · 4.49 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
import spaces
import os
import tempfile
import gradio as gr
from dotenv import load_dotenv
import torch
from scipy.io.wavfile import write
from diffusers import DiffusionPipeline
from transformers import pipeline
from pathlib import Path
load_dotenv()
hf_token = os.getenv("HF_TKN")
device_id = 0 if torch.cuda.is_available() else -1
captioning_pipeline = pipeline(
"image-to-text",
model="nlpconnect/vit-gpt2-image-captioning",
device=device_id
)
pipe = DiffusionPipeline.from_pretrained(
"cvssp/audioldm2",
use_auth_token=hf_token
)
@spaces.GPU(duration=120)
def analyze_image_with_free_model(image_file):
try:
with tempfile.NamedTemporaryFile(suffix=".jpg", delete=False) as temp_file:
temp_file.write(image_file)
temp_image_path = temp_file.name
results = captioning_pipeline(temp_image_path)
if not results or not isinstance(results, list):
return "Error: Could not generate caption.", True
caption = results[0].get("generated_text", "").strip()
if not caption:
return "No caption was generated.", True
return caption, False
except Exception as e:
return f"Error analyzing image: {e}", True
@spaces.GPU(duration=120)
def get_audioldm_from_caption(caption):
try:
pipe.to("cuda")
audio_output = pipe(
prompt=caption,
num_inference_steps=50,
guidance_scale=7.5
)
pipe.to("cpu")
audio = audio_output.audios[0]
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as temp_wav:
write(temp_wav.name, 16000, audio)
return temp_wav.name
except Exception as e:
print(f"Error generating audio from caption: {e}")
return None
css = """
#col-container{
margin: 0 auto;
max-width: 800px;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.HTML("""
<h1 style="text-align: center;">🎶 Generate Sound Effects from Image</h1>
<p style="text-align: center;">
⚡ Powered by <a href="https://bilsimaging.com" target="_blank">Bilsimaging</a>
</p>
""")
gr.Markdown("""
Welcome to this unique sound effect generator! This tool allows you to upload an image and generate a
descriptive caption and a corresponding sound effect, all using free, open-source models on Hugging Face.
**💡 How it works:**
1. **Upload an image**: Choose an image that you'd like to analyze.
2. **Generate Description**: Click on 'Generate Description' to get a textual description of your uploaded image.
3. **Generate Sound Effect**: Based on the image description, click on 'Generate Sound Effect' to create a
sound effect that matches the image context.
Enjoy the journey from visual to auditory sensation with just a few clicks!
""")
image_upload = gr.File(label="Upload Image", type="binary")
generate_description_button = gr.Button("Generate Description")
caption_display = gr.Textbox(label="Image Description", interactive=False)
generate_sound_button = gr.Button("Generate Sound Effect")
audio_output = gr.Audio(label="Generated Sound Effect")
gr.Markdown("""
## 👥 How You Can Contribute
We welcome contributions and suggestions for improvements. Your feedback is invaluable
to the continuous enhancement of this application.
For support, questions, or to contribute, please contact us at
[contact@bilsimaging.com](mailto:contact@bilsimaging.com).
Support our work and get involved by donating through
[Ko-fi](https://ko-fi.com/bilsimaging). - Bilel Aroua
""")
gr.Markdown("""
## 📢 Stay Connected
This app is a testament to the creative possibilities that emerge when technology meets art.
Enjoy exploring the auditory landscape of your images!
""")
def update_caption(image_file):
description, _ = analyze_image_with_free_model(image_file)
return description
def generate_sound(description):
if not description or description.startswith("Error"):
return None
audio_path = get_audioldm_from_caption(description)
return audio_path
generate_description_button.click(
fn=update_caption,
inputs=image_upload,
outputs=caption_display
)
generate_sound_button.click(
fn=generate_sound,
inputs=caption_display,
outputs=audio_output
)
demo.launch(debug=True, share=True)