forked from KexinNiu/EnzBuilder
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patheval_clean.py
209 lines (183 loc) · 7.52 KB
/
eval_clean.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
refs = '/ibex/user/niuk0a/funcarve/cobra/NC_000913.3.txt'
cleanf = '/ibex/user/niuk0a/funcarve/cobra/NC_000913.3_ecoli_maxsep.csv'
unif='/ibex/user/niuk0a/funcarve/cobra/NC_000913.3_uniprotkb_taxonomy_id_83333_2024_10_23.tsv'
refs = '/ibex/user/niuk0a/funcarve/cobra/aaseq_CP000148.1.txt'
cleanf = '/ibex/user/niuk0a/funcarve/cobra/aaseq_CP000148.1_maxsep.csv'
unif='/ibex/user/niuk0a/funcarve/cobra/uniprotkb_taxonomy_id_269799_AND_review_2024_10_27.tsv'
import pandas as pd
def read_refseq_fasta(fasta_file):
seq=''
names =[]
seqs = []
genes = []
db_xref = []
protein_id = []
locustag = []
with open(fasta_file, 'r') as inFile:
for line in inFile:
if line.startswith('>'):
name = line.strip('\n').split('>')[1]
cleanname = name.split('] [')[0].split('lcl|')[1]
names.append(cleanname)
items = name.split(' ')
for item in items:
if item.startswith('['):
item = item[1:-1]
if '=' in item:
key,val = item.split('=')
else:
continue
if key == 'gene':
genes.append(val)
elif key == 'locus_tag':
locustag.append(val)
elif key =='db_xref':
if val.startswith('UniProtKB/Swiss-Prot:'):
val = val.split(':')[-1]
else:
# print('val:',val)
val = val.split(':')[-1]
db_xref.append(val)
elif key =='protein_id':
protein_id.append(val)
if len(names) == len(genes) == len(db_xref) == len(protein_id):
pass
else:
## add a none val to the list
if len(names) > len(genes):
genes.append('None')
if len(names) > len(db_xref):
db_xref.append('None')
if len(names) > len(protein_id):
protein_id.append('None')
# try:
# name = line.strip('\n').split('[gene=')[1].split(']')[0]
# except IndexError:
# name = line.strip('\n').split('[locus_tag=')[1].split(']')[0]
if seq == '':
continue
else:
seqs.append(seq)
seq = ''
else:
seq = seq + line.strip('\n')
seqs.append(seq)
return names,seqs,genes,db_xref,protein_id,locustag
def read_clean_withscore(input_file,threshold=0.8):
# print('threrhold-->',threshold)
pr2ec = {}
predscore = {}
with open(input_file, 'r') as inFile:
for line in inFile:
line = line.strip('\n')
line = line.split(',')
pr = line[0]
# items = line[-1].split(',')
items = line[1:]
for item in items:
if item.startswith('EC:'):
ec,dis = item.split('/')
# ecid = ec.split(':')[-1]
ecid = ec
dis = float(dis)
if dis >= -0.0001:
try:
predscore[pr].update({ecid:dis})
except:
predscore[pr] = {ecid:dis}
if dis >= threshold:
try:
pr2ec[pr].append(ecid)
# predscore[pr].update({ecid:dis})
except KeyError:
pr2ec[pr] = [ecid]
# predscore[pr] = {ecid:dis}
print('pr2ec-protein number->',len(list(pr2ec.keys())))
return pr2ec,predscore
def read_unif(f):
df = pd.read_csv(f,sep='\t')
# only take where Reviewed == reviewed
r_df = df[df['Reviewed']=='reviewed']
# take columns ['Entry','Protein names','Gene names','Organism','EC number','Status']
r_df = r_df[['Entry','Gene Names','EC number']]
return r_df
def check_inter(uniprotecs,cleanecs,counts,total):
# re = [0,0,0,0]
# ptoto =[0,0,0,0]
flage=False
if ';' in uniprotecs:
uniprotecs = uniprotecs.split('; ')
for e in uniprotecs:
level = e.count('-')
for ec in cleanecs:
total[level] +=1
if ec.startswith(e.split('-')[0]):
counts[level] +=1
flage=True
return counts,total,flage
def print_sta(r_df,db_xref,predscore,thres):
count =[0,0,0,0]
total = [0,0,0,0]
totalcount = 0
number = 0
# thres =0.6
for p in db_xref:
cleanname = names[db_xref.index(p)]
try:
cleanpred = predscore[cleanname]
except:
# print('skip protein:',p)
continue
unip = r_df[r_df['Entry']==p]
if unip.empty:
continue
if unip['EC number'].isnull().values.any():
continue
# print('protein:',p)
# print(cleanpred,unip)
uniecs = unip['EC number'].values.tolist()[0]
# cleanecs = set([i.split(':')[1] for i in cleanpred.keys() if cleanpred[i] >= thres])
cleanecs = set([i for i in cleanpred.keys() if cleanpred[i] >= thres])
number+=1
count,total,flage = check_inter(uniecs,cleanecs,count,total)
if flage:
totalcount+=1
print('threshold=',thres)
# print('digits 1:',count[0],total[0],count[0]/total[0])
# print('digits 2:',count[1],total[1],count[1]/total[1])
# print('digits 3:',count[2],total[2],count[2]/total[2])
# print('digits 4:',count[3],total[3],count[3]/total[3])
# print('total:',totalcount,len(db_xref),totalcount/len(db_xref))
print('digits 1:',count[0],total[0])
print('digits 2:',count[1],total[1])
print('digits 3:',count[2],total[2])
print('digits 4:',count[3],total[3])
print('total:',totalcount,len(db_xref),totalcount/len(db_xref))
# print('level 1',count[0]/total[0],sep='|')
# print('level 2',count[1]/total[1],sep='|')
# print('level 3',count[2]/total[2],sep='|')
# print('level 4',count[3]/total[3],sep='|')
# print('total',totalcount/number,sep='|')
return
names, _, genes, db_xref, protein_id,locustag = read_refseq_fasta(refs)
print('len of all output:',len(names),len(genes),len(db_xref),len(protein_id),len(locustag))
pr2ec,predscore = read_clean_withscore(cleanf)
print(names[:10])
print('genes:',genes[:10])
print('protein_id:',protein_id[:10])
cout = [i for i in db_xref if i != 'None']
print('protein number:',len(cout),cout)
print('locustag:',locustag[:10])
print('db_xref:',len(db_xref),db_xref[:10])
print('pr2ec:',len(pr2ec))
# print('predscore:',predscore)
# newprediscoref='/ibex/user/niuk0a/funcarve/cobra/ecoliINTER_newpredscore_8.pkl'
newprediscoref='/ibex/user/niuk0a/funcarve/cobra/iaf987INTER_newpredscore_3.pkl'
newprediscore = pd.read_pickle(newprediscoref)
# print('newprediscore:',newprediscore)
# r_df = read_unif(unif)
# for th in [0.4,0.5,0.6,0.7,0.8,0.9]:
# print_sta(r_df,db_xref,newprediscore,th)
# print('original predscore:_________________________')
# for th in [0.4,0.5,0.6,0.7,0.8,0.9]:
# print_sta(r_df,db_xref,predscore,th)