-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdata_process.py
203 lines (200 loc) · 6.93 KB
/
data_process.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
import os
import gc
import time
import math
import numpy as np
import scipy as sp
import pandas as pd
import scanpy as sc
import mindspore as ms
import mindspore.numpy as mnp
import mindspore.scipy as msc
import mindspore.dataset as ds
import multiprocessing as mp
from tqdm import tqdm,trange
from mindspore import nn,ops
from functools import partial
from multiprocessing import Process,Pool
from scipy.sparse import csr_matrix as csm
class Prepare():
def __init__(
self,pad_len,pad=1,zero_len=None,
mask_ratio=0.2,random=False,cut=None
):
self.zero_len=zero_len
self.n_genes=24078
self.mask_ratio=mask_ratio
self.pad_len=pad_len
self.bern=partial(np.random.binomial,p=0.5)
self.beta=partial(np.random.beta,a=2,b=2)
self.bino=np.random.binomial
self.pad=pad
self.cut=min(pad_len,(cut or pad_len))
self.random=random
self.empty_gene=np.zeros(self.n_genes+1,np.float32)
def normalize(self,data,read):
data=np.log1p(data/read*1e4).astype(np.float32)
return data,read
def zero_idx(self,data):
seq_len=len(data)
one=(data!=0).astype(np.float32)
zero=np.zeros(self.pad_len-seq_len,np.float32)
zero_mask=np.concatenate([one,zero])
return data,zero_mask
def zero_mask(self,seq_len):
zero_len=self.pad_len-seq_len
unmasked=np.ones(zero_len,np.float32)
pad=np.zeros(zero_len,np.float32)
pad=np.stack([unmasked,pad],1)
l=int(self.mask_ratio*min(seq_len,zero_len))
mask=np.random.choice(np.arange(zero_len),l,replace=False)
zero_mask=np.zeros(zero_len,np.float32)
if not self.random:
zero_mask[mask[:int(0.8*l)]]=1
else:
zero_mask[mask]=1
pad[mask]=0
return pad,zero_mask
def mask(self,nzdata):
seq_len=len(nzdata)
l=int(self.mask_ratio*seq_len)
mask=np.arange(seq_len)
unmasked=np.ones_like(nzdata)
nzdata=np.stack([unmasked,nzdata],1)
if l>0:
mask=np.random.permutation(seq_len)[:l]
if not self.random:
nzdata[mask[:int(0.8*l)]]=0
else:
nzdata[mask]=0
mask_gene=np.zeros(seq_len,np.float32)
mask_gene[mask]=1
return nzdata,mask_gene
def pad_gene(self,data,z_data):
return np.concatenate((data,z_data))
def pad_zero(self,data):
shape=(self.pad_len-data.shape[0],*data.shape[1:])
pad=np.zeros(shape,data.dtype)
data=np.concatenate((data,pad),0)
return data
def seperate(self,raw_data):
nonz=raw_data.nonzero()[0]
zero=np.where(raw_data==0)[0]
return raw_data,nonz,zero
def compress(self,data,idx):
return data,data[idx],idx
def sample(self,data,nonz,zero):
cutted=np.array([])
if len(nonz)>self.cut:
w=np.log1p(data[nonz])
w=w/w.sum()
order=np.random.choice(np.arange(len(nonz)),len(nonz),replace=False,p=w)
order=nonz[order]
nonz=np.sort(order[:self.cut])
cutted=np.sort(order[self.cut:])
w=None
l=self.zero_len or (self.pad_len-len(nonz))
z_sample=np.random.choice(zero,l,replace=False,p=w)
seq_len=len(nonz)
return data,nonz,cutted,z_sample,seq_len
def attn_mask(self,seq_len):
mask_row=np.zeros(self.pad_len+self.pad)
mask_row[:seq_len+self.pad]=1
return mask_row.astype(np.float32)
class SCrna():
def __init__(self,path,data,filt_len=(200,2048),prep=False):
min_genes,max_genes=filt_len
suffix=data.split('.')[-1]
if suffix=='h5ad':
adata=sc.read_h5ad(f"{path}/{data}")
else:
adata=sc.read_10x_h5(f"{path}/{data}")
self.gene_info=pd.read_csv(f'./gene_info.csv',index_col=0,header=0)
self.geneset={j:i+1 for i,j in enumerate(self.gene_info.index)}
gene=np.intersect1d(adata.var_names,self.gene_info.index)
if len(gene)<min_genes:
raise Exception('common genes not enough')
data=adata.X.astype(np.float32)
T=adata.X.sum(1)
data=csm(np.round(data/np.maximum(1,T/1e5,dtype=np.float32)))
data.eliminate_zeros()
adata.X=data
self.adata=adata[:,gene]
if prep:
sc.pp.filter_genes(self.adata,min_cells=1)
sc.pp.filter_cells(self.adata,min_genes=min_genes)
sc.pp.filter_cells(self.adata,max_genes=max_genes)
if len(self.adata)==0:
raise Exception('samples are filtered')
print(self.adata.shape)
self.gene=np.array([self.geneset[i] for i in self.adata.var_names]).astype(np.int32)
self.T=np.array(self.adata.X.sum(1)).reshape(-1)
self.data=self.adata.X.astype(np.int32)
def __len__(self):
return len(self.adata)
def __getitem__(self,idx):
data=np.array(self.data[idx].todense()).reshape(-1)
T=self.T[idx]
return data,self.gene,T
def build_dataset(
data,prep,batch,
pad_zero=True,
drop=True,
label=False,
shuffle=False,
rank_size=None,
rank_id=None,
):
dataset = ds.GeneratorDataset(
data,
column_names=['data','gene','T']+(['label'] if label else []),
shuffle=shuffle,
num_shards=rank_size,
shard_id=rank_id
)
dataset = dataset.map(
prep.seperate, input_columns=['data'],
output_columns=['data', 'nonz','zero']
)
dataset = dataset.map(
prep.sample, input_columns=['data','nonz','zero'],
output_columns=['data','nonz','cuted','z_sample','seq_len']
)
dataset = dataset.map(
prep.compress, input_columns=['data','nonz'],
output_columns=['raw_data','raw_nzdata', 'nonz']
)
dataset = dataset.map(
prep.compress, input_columns=['gene','nonz'],
output_columns=['gene','nonz_gene', 'nonz']
)
dataset = dataset.map(
prep.normalize, input_columns=['raw_nzdata','T'],
)
dataset = dataset.map(
prep.attn_mask, input_columns=['seq_len'],
output_columns=['zero_idx']
)
dataset = dataset.map(
lambda x:(x,x.copy()), input_columns=['raw_nzdata'],
output_columns=['raw_nzdata', 'nzdata']
)
dataset = dataset.map(
prep.mask, input_columns=['nzdata'],
output_columns=['masked_nzdata', 'mask_gene']
)
dataset = dataset.map(prep.pad_zero, input_columns=['raw_nzdata'])
dataset = dataset.map(prep.pad_zero, input_columns=['masked_nzdata'])
dataset = dataset.map(prep.pad_zero, input_columns=['nonz_gene'])
dataset = dataset.map(prep.pad_zero, input_columns=['mask_gene'])
dataset=dataset.project(
columns=[
'raw_nzdata','masked_nzdata','nonz_gene','mask_gene','zero_idx'
]+(['label'] if label else [])
)
dataset = dataset.batch(
batch,
num_parallel_workers=4,
drop_remainder=drop,
)
return dataset