-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathscattering_gaussian.nb
88 lines (77 loc) · 3.73 KB
/
scattering_gaussian.nb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
(*Mathematica 9.0*)
Clear["Global`*"];
SaveDefinitions -> True;
(*Firstly I will show a[k] is a Gaussian wave packet*)
\[Psi][0] := (1/Pi^2)^(1/4) E^(I x) E^(-0.5*(x)^2);
a[k_] := Integrate[E^(I k x) \[Psi][0], {x, -Infinity, Infinity}];
a = Abs[a[k]];
Plot[a, {k, -20, 20}, PlotRange -> Full, Filling -> Axis]
Print[ TimeUsed[] "secs was used to compute the results."] (*You can ignore this line*)
(*From the graph above, we can see a[k] is Gaussian*)
(*This is our wave which will move towards the origin from -Infinity and strikes the potential step at x=0*)
(*Unfortunately I have to assume a[k] to be 1 for faster computation
in my machine, the resultant plots will simply be a path of that
gaussian packet which thus will be a straight line. If your
computer is powerful, you can try uncommenting relevant terms above
and below and edit similarly wherever possible. PR are welcome!*)
Clear["Global`*"]; \[CapitalPsi][x_] :=
Piecewise[{{ (E^(-I k x) + E^(I k x)), x <= 0}, {E^( k x), x >= 0}}];
g[x_, k_] := \[CapitalPsi][x](*a[
k]*)(E^(-I (k^2) \[Tau])); (*This means I took a[k] to be one*)
Integrate[g[x, k], {k, 0, 1},
Assumptions -> \[Tau] \[Epsilon] Reals && \[Tau] > 0 && x <= 0] +
Integrate[g[x, k], {k, 1, Infinity},
Assumptions -> \[Tau] \[Epsilon] Reals && \[Tau] > 0 && x >= 0]
(*This gives a conditional expression involving fresnels integrals for the wave function.*)
w = Integrate[E^(-I k^2 \[Tau]) E^(k x), {k, 1, \[Infinity]},
Assumptions -> Reals \[Epsilon] \[Tau] && \[Tau] > 0];
Abs[w]
(*We took the part for t>0 which means time after the packet hits the step*)
DensityPlot[%72(*The result of above expression*),{x, -80, 80}, {\[Tau], -80, 80}, PlotRange -> Full,
ColorFunction -> "BlueGreenYellow", PlotLegends -> Automatic]
(*This gives the density plot of the packet as a function of time. Remember t=0 means it striked the step,
t<0 means before the step and t>0 means after the step*)
(*The above graph is rather ugly. I dont know why*)
(*But it can be made quite beautiful by simplifying some equations*)
f[k_, x_] := (E^(-I k x) + E^(I k x)) (E^(-I (k^2) \[Tau])); (*I did something wrong here or in the step below because the
subsequent plot needs to be rotated. This will be fixed soon*)
Rotate[DensityPlot[
Quiet@Abs[Integrate[f[k, x], {k, 0, 1}]], {x, -80, 80}, {\[Tau], 0,
100}, PlotLegends -> Automatic, ColorFunction -> "SunsetColors",
PerformanceGoal -> "Quality"], 1.5*Pi]
Print[ TimeUsed[] "secs was used to compute the results."]
(*Finally a small animation for this whole theory. Press the play symbol below the slider and enjoy.*)
(*Thanks to some dude on youtube - sorry I forgot name but please contact me if youre the one*)
ClearAll["Global`*"]
SaveDefinitions -> True;
n = 1000;
dx = 1.5/(n - 1);
kx = 150;
TimeSteps = 150;
psi = Table[
Exp[I kx (x - 0.3) - (x - 0.3)^2/(2*0.05^2)], {x, 0, 1.5, dx}];
dt = 5000;
xPotInit = 1.5/2;
xPotFinal = xPotInit + 1.5/30;
potH = 1000;
V = Table[
If[x > xPotInit && x < xPotFinal, potH UnitStep[x], 0], {x, 0, 1.5,
dx}];
\[Tau] = 1/(4 dx^2);
tauvec = Table[\[Tau], {n - 1}];
For[tt = 1, tt <= TimeSteps, tt++,
psi = LinearSolve[
SparseArray[{Band[{1, 2}] -> tauvec,
Band[{1, 1}] -> I dt - 2 \[Tau] - V,
Band[{2, 1}] ->
tauvec}], (I dt + 2 \[Tau] + V) psi - \[Tau] Table[
2 psi[[xx]], {xx, 1, n}]]; PsiN[tt] = psi/Norm[psi];]
all = Join[Table[Abs[PsiN[i]], {i, 1, TimeSteps, 1}]]; allreal =
Join[Table[Re[PsiN[i]], {i, 1, TimeSteps, 1}]];
pr = .02;
Manipulate[
Show[ListLinePlot[all[[t, ;;]]^2, PlotRange -> {{0, n}, {-pr, pr}},
Axes -> {True, False}, Ticks -> None],
ListLinePlot[.95 pr*V/Max[V], PlotStyle -> { Black, Thick}]], {t, 1,
TimeSteps, 1}]
(*Print[ TimeUsed[] "secs was used to compute the results."]*)