-
Notifications
You must be signed in to change notification settings - Fork 48
/
Copy pathextract_superpixels.py
140 lines (112 loc) · 6.21 KB
/
extract_superpixels.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
# Compute superpixels for MNIST/CIFAR-10 using SLIC algorithm
# https://scikit-image.org/docs/dev/api/skimage.segmentation.html#skimage.segmentation.slic
import numpy as np
import random
import os
import scipy
import pickle
from skimage.segmentation import slic
from torchvision import datasets
import multiprocessing as mp
import scipy.ndimage
import scipy.spatial
import argparse
import datetime
def parse_args():
parser = argparse.ArgumentParser(description='Extract SLIC superpixels from images')
parser.add_argument('-D', '--dataset', type=str, default='mnist', choices=['mnist', 'cifar10'])
parser.add_argument('-d', '--data_dir', type=str, default='./data', help='path to the dataset')
parser.add_argument('-o', '--out_dir', type=str, default='./data', help='path where to save superpixels')
parser.add_argument('-s', '--split', type=str, default='train', choices=['train', 'val', 'test'])
parser.add_argument('-t', '--threads', type=int, default=0, help='number of parallel threads')
parser.add_argument('-n', '--n_sp', type=int, default=75, help='max number of superpixels per image')
parser.add_argument('-c', '--compactness', type=int, default=0.25, help='compactness of the SLIC algorithm '
'(Balances color proximity and space proximity): '
'0.25 is a good value for MNIST '
'and 10 for color images like CIFAR-10')
parser.add_argument('--seed', type=int, default=111, help='seed for shuffling nodes')
args = parser.parse_args()
for arg in vars(args):
print(arg, getattr(args, arg))
return args
def process_image(params):
img, index, n_images, args, to_print, shuffle = params
assert img.dtype == np.uint8, img.dtype
img = (img / 255.).astype(np.float32)
n_sp_extracted = args.n_sp + 1 # number of actually extracted superpixels (can be different from requested in SLIC)
n_sp_query = args.n_sp + (20 if args.dataset == 'mnist' else 50) # number of superpixels we ask to extract (larger to extract more superpixels - closer to the desired n_sp)
while n_sp_extracted > args.n_sp:
superpixels = slic(img, n_segments=n_sp_query, compactness=args.compactness, multichannel=len(img.shape) > 2)
sp_indices = np.unique(superpixels)
n_sp_extracted = len(sp_indices)
n_sp_query -= 1 # reducing the number of superpixels until we get <= n superpixels
assert n_sp_extracted <= args.n_sp and n_sp_extracted > 0, (args.split, index, n_sp_extracted, args.n_sp)
assert n_sp_extracted == np.max(superpixels) + 1, ('superpixel indices', np.unique(superpixels)) # make sure superpixel indices are numbers from 0 to n-1
if shuffle:
ind = np.random.permutation(n_sp_extracted)
else:
ind = np.arange(n_sp_extracted)
sp_order = sp_indices[ind].astype(np.int32)
if len(img.shape) == 2:
img = img[:, :, None]
n_ch = 1 if img.shape[2] == 1 else 3
sp_intensity, sp_coord = [], []
for seg in sp_order:
mask = (superpixels == seg).squeeze()
avg_value = np.zeros(n_ch)
for c in range(n_ch):
avg_value[c] = np.mean(img[:, :, c][mask])
cntr = np.array(scipy.ndimage.measurements.center_of_mass(mask)) # row, col
sp_intensity.append(avg_value)
sp_coord.append(cntr)
sp_intensity = np.array(sp_intensity, np.float32)
sp_coord = np.array(sp_coord, np.float32)
if to_print:
print('image={}/{}, shape={}, min={:.2f}, max={:.2f}, n_sp={}'.format(index + 1, n_images, img.shape,
img.min(), img.max(), sp_intensity.shape[0]))
return sp_intensity, sp_coord, sp_order, superpixels
if __name__ == '__main__':
dt = datetime.datetime.now()
print('start time:', dt)
args = parse_args()
if not os.path.isdir(args.out_dir):
os.mkdir(args.out_dir)
random.seed(args.seed)
np.random.seed(args.seed) # to make node random permutation reproducible (not tested)
# Read image data using torchvision
is_train = args.split.lower() == 'train'
if args.dataset == 'mnist':
data = datasets.MNIST(args.data_dir, train=is_train, download=True)
assert args.compactness < 10, ('high compactness can result in bad superpixels on MNIST')
assert args.n_sp > 1 and args.n_sp < 28*28, (
'the number of superpixels cannot exceed the total number of pixels or be too small')
elif args.dataset == 'cifar10':
data = datasets.CIFAR10(args.data_dir, train=is_train, download=True)
assert args.compactness > 1, ('low compactness can result in bad superpixels on CIFAR-10')
assert args.n_sp > 1 and args.n_sp < 32*32, (
'the number of superpixels cannot exceed the total number of pixels or be too small')
else:
raise NotImplementedError('unsupported dataset: ' + args.dataset)
images = data.train_data if is_train else data.test_data
labels = data.train_labels if is_train else data.test_labels
if not isinstance(images, np.ndarray):
images = images.numpy()
if isinstance(labels, list):
labels = np.array(labels)
if not isinstance(labels, np.ndarray):
labels = labels.numpy()
n_images = len(labels)
if args.threads <= 0:
sp_data = []
for i in range(n_images):
sp_data.append(process_image((images[i], i, n_images, args, True, True)))
else:
with mp.Pool(processes=args.threads) as pool:
sp_data = pool.map(process_image, [(images[i], i, n_images, args, True, True) for i in range(n_images)])
superpixels = [sp_data[i][3] for i in range(n_images)]
sp_data = [sp_data[i][:3] for i in range(n_images)]
with open('%s/%s_%dsp_%s.pkl' % (args.out_dir, args.dataset, args.n_sp, args.split), 'wb') as f:
pickle.dump((labels.astype(np.int32), sp_data), f, protocol=2)
with open('%s/%s_%dsp_%s_superpixels.pkl' % (args.out_dir, args.dataset, args.n_sp, args.split), 'wb') as f:
pickle.dump(superpixels, f, protocol=2)
print('done in {}'.format(datetime.datetime.now() - dt))