-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathkernels.cl
818 lines (688 loc) · 31.9 KB
/
kernels.cl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
#include "common.h"
#define SCRATCH_METHOD (1 << 0)
#define SAILFISH_METHOD (1 << 1)
#define SIMULATION_METHOD SCRATCH_METHOD
#define CALCULATION_ORDER_SAILFISH 0
#define STREAMING_METHOD SCRATCH_METHOD
// The following definitions are provided at compile time
//
// FP_SINGLE or FP_DOUBLE to set the simulation with float or double type
// DIM the cube dimension of the simulation
// LWS work_group_size
// STRIDE_DIV value used to calculate index of CSoA data layout
// STRIDE_MOD value used to calculate index of CSoA data layout
// VELOCITY the moving wall velocity
// VISCOSITY the fluid viscosity
#if defined(FP_SINGLE)
typedef float real_t;
#elif defined(FP_DOUBLE)
#pragma OPENCL EXTENSION cl_khr_fp64 : enable
#pragma OPENCL EXTENSION cl_amd_fp64 : enable
typedef double real_t;
#else
#error "FP_SINGLE or FP_DOUBLE are not defined"
#endif
#ifndef DIM
#error DIM is not defined
#endif
#ifndef LWS
#error LWS is not defined
#endif
#ifndef STRIDE_DIV
#error STRIDE_DIV is not defined
#endif
#ifndef STRIDE_MOD
#error STRIDE_MOD is not defined
#endif
#ifndef VELOCITY
#error VELOCITY is not defined
#endif
#ifndef VISCOSITY
#error VISCOSITY is not defined
#endif
#define INITIAL_DENSITY 1.0
#define INITIAL_VELOCITY_X VELOCITY
#define INITIAL_VELOCITY_Y 0.0
#define INITIAL_VELOCITY_Z 0.0
#define TAU ((3.0 * VISCOSITY) + 0.5)
#define INV_TAU (1.0 / TAU) // 1.89861401177140698415
#define IDxyzq(id, q) ((((id) >> STRIDE_DIV) * Q + q) << STRIDE_DIV) + ((id) & STRIDE_MOD)
#define IDXYZQ(x, y, z, q) ((((((x) + ((y) * DIM) + ((z) * DIM * DIM)) >> STRIDE_DIV) * Q + q) << STRIDE_DIV) + (((x) + ((y) * DIM) + ((z) * DIM * DIM)) & STRIDE_MOD))
#define IDxyz(x, y, z) ((x) + ((y) * (DIM)) + ((z) * (DIM) * (DIM)))
#define UX(id) u[0 * DIM * DIM * DIM + id]
#define UY(id) u[1 * DIM * DIM * DIM + id]
#define UZ(id) u[2 * DIM * DIM * DIM + id]
// MACRO UNROLL of 19.
#define UNROLL_19() \
UNROLL_X(0) \
UNROLL_X(1) \
UNROLL_X(2) \
UNROLL_X(3) \
UNROLL_X(4) \
UNROLL_X(5) \
UNROLL_X(6) \
UNROLL_X(7) \
UNROLL_X(8) \
UNROLL_X(9) \
UNROLL_X(10) \
UNROLL_X(11) \
UNROLL_X(12) \
UNROLL_X(13) \
UNROLL_X(14) \
UNROLL_X(15) \
UNROLL_X(16) \
UNROLL_X(17) \
UNROLL_X(18)
// MACRO UNROLL of 9.
// Only the half of the indices are present the other, that are the opposites,
// can be calculated with S(i) macro
#define UNROLL_HALF_19() \
UNROLL_X( 1) \
UNROLL_X( 2) \
UNROLL_X( 5) \
UNROLL_X( 7) \
UNROLL_X( 8) \
UNROLL_X(11) \
UNROLL_X(12) \
UNROLL_X(13) \
UNROLL_X(14)
#define OMEGA_0 (1.0 / 3.0)
#define OMEGA_1 (1.0 / 18.0)
#define OMEGA_2 (1.0 / 18.0)
#define OMEGA_3 (1.0 / 18.0)
#define OMEGA_4 (1.0 / 18.0)
#define OMEGA_5 (1.0 / 18.0)
#define OMEGA_6 (1.0 / 18.0)
#define OMEGA_7 (1.0 / 36.0)
#define OMEGA_8 (1.0 / 36.0)
#define OMEGA_9 (1.0 / 36.0)
#define OMEGA_10 (1.0 / 36.0)
#define OMEGA_11 (1.0 / 36.0)
#define OMEGA_12 (1.0 / 36.0)
#define OMEGA_13 (1.0 / 36.0)
#define OMEGA_14 (1.0 / 36.0)
#define OMEGA_15 (1.0 / 36.0)
#define OMEGA_16 (1.0 / 36.0)
#define OMEGA_17 (1.0 / 36.0)
#define OMEGA_18 (1.0 / 36.0)
#define E0_X ( 0)
#define E0_Y ( 0)
#define E0_Z ( 0)
#define E1_X (+1)
#define E1_Y ( 0)
#define E1_Z ( 0)
#define E2_X ( 0)
#define E2_Y (+1)
#define E2_Z ( 0)
#define E3_X (-1)
#define E3_Y ( 0)
#define E3_Z ( 0)
#define E4_X ( 0)
#define E4_Y (-1)
#define E4_Z ( 0)
#define E5_X ( 0)
#define E5_Y ( 0)
#define E5_Z (-1)
#define E6_X ( 0)
#define E6_Y ( 0)
#define E6_Z (+1)
#define E7_X (+1)
#define E7_Y (+1)
#define E7_Z ( 0)
#define E8_X (-1)
#define E8_Y (+1)
#define E8_Z ( 0)
#define E9_X (-1)
#define E9_Y (-1)
#define E9_Z ( 0)
#define E10_X (+1)
#define E10_Y (-1)
#define E10_Z ( 0)
#define E11_X (+1)
#define E11_Y ( 0)
#define E11_Z (-1)
#define E12_X ( 0)
#define E12_Y (+1)
#define E12_Z (-1)
#define E13_X (-1)
#define E13_Y ( 0)
#define E13_Z (-1)
#define E14_X ( 0)
#define E14_Y (-1)
#define E14_Z (-1)
#define E15_X (+1)
#define E15_Y ( 0)
#define E15_Z (+1)
#define E16_X ( 0)
#define E16_Y (+1)
#define E16_Z (+1)
#define E17_X (-1)
#define E17_Y ( 0)
#define E17_Z (+1)
#define E18_X ( 0)
#define E18_Y (-1)
#define E18_Z (+1)
#define S_0 0
#define S_1 3
#define S_2 4
#define S_3 1
#define S_4 2
#define S_5 6
#define S_6 5
#define S_7 9
#define S_8 10
#define S_9 7
#define S_10 8
#define S_11 17
#define S_12 18
#define S_13 15
#define S_14 16
#define S_15 13
#define S_16 14
#define S_17 11
#define S_18 12
#define PRIMITIVE_CAT(a, b) a ## b
#define CAT(a, b) PRIMITIVE_CAT(a, b)
#define F f
#define S(i) S_##i
#define F_S(i) CAT(F, S(i))
inline int get_cell_type(const int x, const int y, const int z)
{
int cell_type = NONE;
if (x == 1) cell_type |= LEFT;
if (x == (DIM - 2)) cell_type |= RIGHT;
if (y == 1) cell_type |= BOTTOM;
if (y == (DIM - 2)) cell_type |= TOP;
if (z == 1) cell_type |= BACK;
if (z == (DIM - 2)) cell_type |= FRONT;
if (x == 0) cell_type = WALL;
if (x == (DIM - 1)) cell_type = WALL;
if (y == 0) cell_type = WALL;
if (y == (DIM - 1)) cell_type = WALL;
if (z == 0) cell_type = WALL;
if (z == (DIM - 1)) cell_type = WALL;
if (cell_type == (LEFT | BACK | BOTTOM) ||
cell_type == (RIGHT | BACK | BOTTOM) ||
cell_type == (LEFT | BACK | TOP ) ||
cell_type == (RIGHT | BACK | TOP ))
{
cell_type = CORNER;
}
if (cell_type == MOVING_BOUNDARY) cell_type |= MOVING;
if (cell_type == NONE) cell_type = FLUID;
return cell_type;
}
// Bhatnagar-Gross-Kroop approximation collision operator
inline real_t compute_bgk(const real_t f, const real_t f_eq)
{
return f + INV_TAU * (f_eq - f);
}
#if (SIMULATION_METHOD == SCRATCH_METHOD)
__kernel
void initialize(__global real_t * restrict f_stream,
__global real_t * restrict f_collide,
__global real_t * restrict density,
__global real_t * restrict u,
__global int * restrict map)
{
const int x = get_global_id(0);
const int y = get_global_id(1);
const int z = get_global_id(2);
const int id = IDxyz(x, y, z);
const int cell_type = get_cell_type(x, y, z);
map[id] = cell_type;
const real_t rho = INITIAL_DENSITY;
const real_t ux = (is_moving_init(cell_type) ? INITIAL_VELOCITY_X : 0.0);
const real_t uy = (is_moving_init(cell_type) ? INITIAL_VELOCITY_Y : 0.0);
const real_t uz = (is_moving_init(cell_type) ? INITIAL_VELOCITY_Z : 0.0);
density[id] = (is_store_macro(cell_type) ? rho : NAN);
UX(id) = (is_store_macro(cell_type) ? ux : NAN);
UY(id) = (is_store_macro(cell_type) ? uy : NAN);
UZ(id) = (is_store_macro(cell_type) ? uz : NAN);
real_t eu = 0.0;
const real_t u2 = (ux * ux) + (uy * uy) + (uz * uz);
#undef UNROLL_X
#define UNROLL_X(i) \
eu = (ux * E##i##_X) + (uy * E##i##_Y) + (uz * E##i##_Z); \
const real_t f##i = (rho * OMEGA_##i) * (1.0 + (3.0 * eu) + (4.5 * eu * eu) - (1.5 * u2));
UNROLL_19();
#undef UNROLL_X
#define UNROLL_X(i) f_collide[IDxyzq(id, i)] = (is_wall(cell_type) ? NAN : f##i);
UNROLL_19();
#undef UNROLL_X
#define UNROLL_X(i) f_stream[IDxyzq(id, i)] = (is_wall(cell_type) ? NAN : f##i);
UNROLL_19();
}
__kernel
void compute(__global real_t * restrict f_stream,
__global const real_t * restrict f_collide,
__global real_t * restrict density,
__global real_t * restrict u,
__global const int * restrict map,
const int update_macro)
{
const int x = get_global_id(0);
const int y = get_global_id(1);
const int z = get_global_id(2);
const int id = IDxyz(x, y, z);
const int cell_type = map[id];
real_t eu = 0.0;
real_t u2 = 0.0;
#define tmp eu
#undef UNROLL_X
#define UNROLL_X(i) real_t f##i = f_collide[IDxyzq(id, i)];
UNROLL_19();
if (is_moving(cell_type)) {
f5 = F_S( 5);
f11 = F_S(11);
f12 = F_S(12);
f13 = F_S(13);
f14 = F_S(14);
}
/*** Compute Macro quantities (rho & u) ***/
#if CALCULATION_ORDER_SAILFISH
const real_t rho = f5 + f11 + f12 + f14 + f13 + f0 + f1 + f2 + f7 + f8 + f4 + f10 + f9 + f6 + f15 + f16 + f18 + f17 + f3;
#else
const real_t rho = f0 + f1 + f2 + f3 + f4 + f5 + f6 + f7 + f8 + f9 + f10 + f11 + f12 + f13 + f14 + f15 + f16 + f17 + f18;
#endif
real_t ux = NAN;
real_t uy = NAN;
real_t uz = NAN;
if (is_moving(cell_type)) {
ux = INITIAL_VELOCITY_X;
uy = INITIAL_VELOCITY_Y;
uz = INITIAL_VELOCITY_Z;
} else {
#if CALCULATION_ORDER_SAILFISH
//fBE - fBW + fE + fNE - fNW + fSE - fSW + fTE - fTW - fW) / zero;
ux = (f11 - f13 + f1 + f7 - f8 + f10 - f9 + f15 - f17 - f3) / rho;
//(fBN - fBS + fN + fNE + fNW - fS - fSE - fSW + fTN - fTS) / zero;
uy = (f12 - f14 + f2 + f7 + f8 - f4 - f10 - f9 + f16 - f18) / rho;
//(-fB - fBE - fBN - fBS - fBW + fT + fTE + fTN + fTS + fTW) / zero;
uz = (-f5 - f11 - f12 - f14 - f13 + f6 + f15 + f16 + f18 + f17) / rho;
#else
ux = (( f1 + f7 + f10 + f11 + f15) - ( f3 + f8 + f9 + f13 + f17)) / rho;
uy = (( f2 + f7 + f8 + f12 + f16) - ( f4 + f9 + f10 + f14 + f18)) / rho;
uz = (( f6 + f15 + f16 + f17 + f18) - ( f5 + f11 + f12 + f13 + f14)) / rho;
#endif
}
/*** Store macro quantities (rho & u) ***/
if (update_macro && is_store_macro(cell_type)) {
density[id] = rho;
UX(id) = ux;
UY(id) = uy;
UZ(id) = uz;
}
u2 = (ux * ux) + (uy * uy) + (uz * uz);
/*** Boundary Conditions ***/
if (is_moving(cell_type)) {
#undef UNROLL_X
#define UNROLL_X(i) \
eu = (ux * E##i##_X) + (uy * E##i##_Y) + (uz * E##i##_Z); \
f##i = (rho * OMEGA_##i) * (1.0 + (3.0 * eu) + (4.5 * eu * eu) - (1.5 * u2));
UNROLL_19();
} else if (is_bounceback(cell_type)) {
#undef UNROLL_X
#define UNROLL_X(i) \
tmp = f##i; \
f##i = F_S(i); \
F_S(i) = tmp;
UNROLL_HALF_19();
}
/*** Collision ***/
if (is_collision(cell_type)) {
#undef UNROLL_X
#define UNROLL_X(i) \
eu = (ux * E##i##_X) + (uy * E##i##_Y) + (uz * E##i##_Z); \
f##i = compute_bgk(f##i, (rho * OMEGA_##i) * (1.0 + (3.0 * eu) + (4.5 * eu * eu) - (1.5 * u2)));
UNROLL_19();
}
#if (STREAMING_METHOD == SCRATCH_METHOD)
if (is_wall(cell_type)) return;
#undef UNROLL_X
#define UNROLL_X(i) f_stream[IDXYZQ(x + E##i##_X, y + E##i##_Y, z + E##i##_Z, i)] = f##i;
UNROLL_19();
#endif
#if (STREAMING_METHOD == SAILFISH_METHOD)
const int lx = get_local_id(0);
bool alive = true;
if (is_wall(cell_type) || is_corner(cell_type)) {
alive = false;
}
__local real_t _f1[LWS];
__local real_t _f7[LWS];
__local real_t _f10[LWS];
__local real_t _f11[LWS];
__local real_t _f15[LWS];
#define _f3 _f1
#define _f8 _f10
#define _f9 _f7
#define _f13 _f15
#define _f17 _f11
_f1[lx] = -1.0; // Fill the propagation buffer with sentinel values.
barrier(CLK_LOCAL_MEM_FENCE);
if (alive) {
f_stream[IDxyzq(id, 0)] = f0; // 0 0 0
// Propagation in directions orthogonal to the X axis (global memory)
if (y < (DIM-1)) f_stream[IDXYZQ( x, y+1, z, 2)] = f2; // 0 +1 0
if (y > 0 ) f_stream[IDXYZQ( x, y-1, z, 4)] = f4; // 0 -1 0
if (z > 0 ) f_stream[IDXYZQ( x, y, z-1, 5)] = f5; // 0 0 -1
if (z < (DIM-1)) f_stream[IDXYZQ( x, y, z+1, 6)] = f6; // 0 0 +1
if (y < (DIM-1) && z > 0 ) f_stream[IDXYZQ( x, y+1, z-1, 12)] = f12; // 0 +1 -1
if (y > 0 && z > 0 ) f_stream[IDXYZQ( x, y-1, z-1, 14)] = f14; // 0 -1 -1
if (y < (DIM-1) && z < (DIM-1)) f_stream[IDXYZQ( x, y+1, z+1, 16)] = f16; // 0 +1 +1
if (y > 0 && z < (DIM-1)) f_stream[IDXYZQ( x, y-1, z+1, 18)] = f18; // 0 -1 +1
// E propagation in shared memory
if (x < (DIM-1) && lx < (LWS-1) && x != (DIM-2)) {
_f1[lx + 1] = f1;
_f7[lx + 1] = f7;
_f10[lx + 1] = f10;
_f11[lx + 1] = f11;
_f15[lx + 1] = f15;
}
}
barrier(CLK_LOCAL_MEM_FENCE);
// Save locally propagated distributions into global memory.
// The leftmost thread is not updated in this block.
if (alive && lx > 0 && x < DIM) {
if (_f1[lx] != -1.0) {
f_stream[IDXYZQ( x, y, z, 1)] = _f1[lx]; // 0 0 0
if (y < (DIM-1)) f_stream[IDXYZQ( x, y+1, z, 7)] = _f7[lx]; // 0 +1 0
if (y > 0 ) f_stream[IDXYZQ( x, y-1, z, 10)] = _f10[lx]; // 0 -1 0
if (z < (DIM-1)) f_stream[IDXYZQ( x, y, z+1, 15)] = _f15[lx]; // 0 0 +1
if (z > 0 ) f_stream[IDXYZQ( x, y, z-1, 11)] = _f11[lx]; // 0 0 -1
}
}
barrier(CLK_LOCAL_MEM_FENCE);
_f1[lx] = -1.0; // Refill the propagation buffer with sentinel values.
barrier(CLK_LOCAL_MEM_FENCE);
// W propagation in shared memory
if (alive && (lx > 1 || (lx > 0 && x >= LWS))) {
_f3[lx - 1] = f3;
_f8[lx - 1] = f8;
_f9[lx - 1] = f9;
_f13[lx - 1] = f13;
_f17[lx - 1] = f17;
}
barrier(CLK_LOCAL_MEM_FENCE);
// The rightmost thread is not updated in this block.
if (alive && lx < (LWS-1) && x < (DIM-1) && _f1[lx] != -1.0) {
f_stream[IDXYZQ( x, y, z, 3)] = _f3[lx]; // 0 0 0
if (y < (DIM-1)) f_stream[IDXYZQ( x, y+1, z, 8)] = _f8[lx]; // 0 +1 0
if (y > 0 ) f_stream[IDXYZQ( x, y-1, z, 9)] = _f9[lx]; // 0 -1 0
if (z > 0 ) f_stream[IDXYZQ( x, y, z-1, 13)] = _f13[lx]; // 0 0 -1
if (z < (DIM-1)) f_stream[IDXYZQ( x, y, z+1, 17)] = _f17[lx]; // 0 0 +1
}
#endif
}
#else
__kernel
void initialize(__global real_t * restrict f_stream,
__global real_t * restrict f_collide,
__global real_t * restrict density,
__global real_t * restrict u,
__global int * restrict map)
{
const int x = get_global_id(0);
const int y = get_global_id(1);
const int z = get_global_id(2);
const int id = IDxyz(x, y, z);
const int cell_type = get_cell_type(x, y, z);
map[id] = cell_type;
const real_t rho = INITIAL_DENSITY;
const real_t ux = (is_moving_init(cell_type) ? INITIAL_VELOCITY_X : 0.0);
const real_t uy = (is_moving_init(cell_type) ? INITIAL_VELOCITY_Y : 0.0);
const real_t uz = (is_moving_init(cell_type) ? INITIAL_VELOCITY_Z : 0.0);
density[id] = (is_store_macro(cell_type) ? rho : NAN);
UX(id) = (is_store_macro(cell_type) ? ux : NAN);
UY(id) = (is_store_macro(cell_type) ? uy : NAN);
UZ(id) = (is_store_macro(cell_type) ? uz : NAN);
const real_t f0 = (OMEGA_0 * rho) * (-1.5 * (ux * ux) - 1.5 * (uy * uy) - 1.5 * (uz * uz)) + (OMEGA_0 * rho);
const real_t f1 = (OMEGA_1 * rho) * (ux * (3.0 * ux + 3.0) - 1.5 * (uy * uy) - 1.5 * (uz * uz)) + (OMEGA_1 * rho);
const real_t f2 = (OMEGA_2 * rho) * (-1.5 * (ux * ux) + uy * (3.0 * uy + 3.0) - 1.5 * (uz * uz)) + (OMEGA_2 * rho);
const real_t f3 = (OMEGA_3 * rho) * (ux * (3.0 * ux - 3.0) - 1.5 * (uy * uy) - 1.5 * (uz * uz)) + (OMEGA_3 * rho);
const real_t f4 = (OMEGA_4 * rho) * (-1.5 * (ux * ux) + uy * (3.0 * uy - 3.0) - 1.5 * (uz * uz)) + (OMEGA_4 * rho);
const real_t f5 = (OMEGA_5 * rho) * (-1.5 * (ux * ux) - 1.5 * (uy * uy) + uz * (3.0 * uz - 3.0)) + (OMEGA_5 * rho);
const real_t f6 = (OMEGA_6 * rho) * (-1.5 * (ux * ux) - 1.5 * (uy * uy) + uz * (3.0 * uz + 3.0)) + (OMEGA_6 * rho);
const real_t f7 = (OMEGA_7 * rho) * (ux * (3.0 * ux + 9.0 * uy + 3.0) + uy * (3.0 * uy + 3.0) - 1.5 * (uz * uz)) + (OMEGA_7 * rho);
const real_t f8 = (OMEGA_8 * rho) * (ux * (3.0 * ux - 9.0 * uy - 3.0) + uy * (3.0 * uy + 3.0) - 1.5 * (uz * uz)) + (OMEGA_8 * rho);
const real_t f9 = (OMEGA_9 * rho) * (ux * (3.0 * ux + 9.0 * uy - 3.0) + uy * (3.0 * uy - 3.0) - 1.5 * (uz * uz)) + (OMEGA_9 * rho);
const real_t f10 = (OMEGA_10 * rho) * (ux * (3.0 * ux - 9.0 * uy + 3.0) + uy * (3.0 * uy - 3.0) - 1.5 * (uz * uz)) + (OMEGA_10 * rho);
const real_t f11 = (OMEGA_11 * rho) * (ux * (3.0 * ux - 9.0 * uz + 3.0) - 1.5 * (uy * uy) + uz * (3.0 * uz - 3.0)) + (OMEGA_11 * rho);
const real_t f12 = (OMEGA_12 * rho) * (-1.5 * (ux * ux) + uy * (3.0 * uy - 9.0 * uz + 3.0) + uz * (3.0 * uz - 3.0)) + (OMEGA_12 * rho);
const real_t f13 = (OMEGA_13 * rho) * (ux * (3.0 * ux + 9.0 * uz - 3.0) - 1.5 * (uy * uy) + uz * (3.0 * uz - 3.0)) + (OMEGA_13 * rho);
const real_t f14 = (OMEGA_14 * rho) * (-1.5 * (ux * ux) + uy * (3.0 * uy + 9.0 * uz - 3.0) + uz * (3.0 * uz - 3.0)) + (OMEGA_14 * rho);
const real_t f15 = (OMEGA_15 * rho) * (ux * (3.0 * ux + 9.0 * uz + 3.0) - 1.5 * (uy * uy) + uz * (3.0 * uz + 3.0)) + (OMEGA_15 * rho);
const real_t f16 = (OMEGA_16 * rho) * (-1.5 * (ux * ux) + uy * (3.0 * uy + 9.0 * uz + 3.0) + uz * (3.0 * uz + 3.0)) + (OMEGA_16 * rho);
const real_t f17 = (OMEGA_17 * rho) * (ux * (3.0 * ux - 9.0 * uz - 3.0) - 1.5 * (uy * uy) + uz * (3.0 * uz + 3.0)) + (OMEGA_17 * rho);
const real_t f18 = (OMEGA_18 * rho) * (-1.5 * (ux * ux) + uy * (3.0 * uy - 9.0 * uz - 3.0) + uz * (3.0 * uz + 3.0)) + (OMEGA_18 * rho);
#undef UNROLL_X
#define UNROLL_X(i) f_collide[IDxyzq(id, i)] = (is_wall(cell_type) ? NAN : f##i);
UNROLL_19();
#undef UNROLL_X
#define UNROLL_X(i) f_stream[IDxyzq(id, i)] = (is_wall(cell_type) ? NAN : f##i);
UNROLL_19();
}
__kernel
void compute(__global real_t * restrict f_stream,
__global const real_t * restrict f_collide,
__global real_t * restrict density,
__global real_t * restrict u,
__global const int * restrict map)
{
const int x = get_global_id(0);
const int y = get_global_id(1);
const int z = get_global_id(2);
const int id = IDxyz(x, y, z);
const int cell_type = map[id];
#undef UNROLL_X
#define UNROLL_X(i) real_t f##i = f_collide[IDxyzq(id, i)];
UNROLL_19();
if (is_moving(cell_type)) {
f5 = F_S( 5);
f11 = F_S(11);
f12 = F_S(12);
f13 = F_S(13);
f14 = F_S(14);
}
/*** Compute Macro quantities (rho & u) ***/
const real_t rho = f5 + f11 + f12 + f14 + f13 + f0 + f1 + f2 + f7 + f8 + f4 + f10 + f9 + f6 + f15 + f16 + f18 + f17 + f3;
real_t ux = NAN;
real_t uy = NAN;
real_t uz = NAN;
if (is_moving(cell_type)) {
ux = INITIAL_VELOCITY_X;
uy = INITIAL_VELOCITY_Y;
uz = INITIAL_VELOCITY_Z;
} else {
ux = (f11 - f13 + f1 + f7 - f8 + f10 - f9 + f15 - f17 - f3) / rho;
uy = (f12 - f14 + f2 + f7 + f8 - f4 - f10 - f9 + f16 - f18) / rho;
uz = (-f5 - f11 - f12 - f14 - f13 + f6 + f15 + f16 + f18 + f17) / rho;
}
/*** Store macro quantities (rho & u) ***/
if (is_store_macro(cell_type)) {
density[id] = rho;
UX(id) = ux;
UY(id) = uy;
UZ(id) = uz;
}
/*** Boundary Conditions ***/
if (is_moving(cell_type)) {
f0 = (OMEGA_0 * rho) * (-1.5 * (ux * ux) - 1.5 * (uy * uy) - 1.5 * (uz * uz)) + (OMEGA_0 * rho);
f1 = (OMEGA_1 * rho) * (ux * (3.0 * ux + 3.0) - 1.5 * (uy * uy) - 1.5 * (uz * uz)) + (OMEGA_1 * rho);
f2 = (OMEGA_2 * rho) * (-1.5 * (ux * ux) + uy * (3.0 * uy + 3.0) - 1.5 * (uz * uz)) + (OMEGA_2 * rho);
f3 = (OMEGA_3 * rho) * (ux * (3.0 * ux - 3.0) - 1.5 * (uy * uy) - 1.5 * (uz * uz)) + (OMEGA_3 * rho);
f4 = (OMEGA_4 * rho) * (-1.5 * (ux * ux) + uy * (3.0 * uy - 3.0) - 1.5 * (uz * uz)) + (OMEGA_4 * rho);
f5 = (OMEGA_5 * rho) * (-1.5 * (ux * ux) - 1.5 * (uy * uy) + uz * (3.0 * uz - 3.0)) + (OMEGA_5 * rho);
f6 = (OMEGA_6 * rho) * (-1.5 * (ux * ux) - 1.5 * (uy * uy) + uz * (3.0 * uz + 3.0)) + (OMEGA_6 * rho);
f7 = (OMEGA_7 * rho) * (ux * (3.0 * ux + 9.0 * uy + 3.0) + uy * (3.0 * uy + 3.0) - 1.5 * (uz * uz)) + (OMEGA_7 * rho);
f8 = (OMEGA_8 * rho) * (ux * (3.0 * ux - 9.0 * uy - 3.0) + uy * (3.0 * uy + 3.0) - 1.5 * (uz * uz)) + (OMEGA_8 * rho);
f9 = (OMEGA_9 * rho) * (ux * (3.0 * ux + 9.0 * uy - 3.0) + uy * (3.0 * uy - 3.0) - 1.5 * (uz * uz)) + (OMEGA_9 * rho);
f10 = (OMEGA_10 * rho) * (ux * (3.0 * ux - 9.0 * uy + 3.0) + uy * (3.0 * uy - 3.0) - 1.5 * (uz * uz)) + (OMEGA_10 * rho);
f11 = (OMEGA_11 * rho) * (ux * (3.0 * ux - 9.0 * uz + 3.0) - 1.5 * (uy * uy) + uz * (3.0 * uz - 3.0)) + (OMEGA_11 * rho);
f12 = (OMEGA_12 * rho) * (-1.5 * (ux * ux) + uy * (3.0 * uy - 9.0 * uz + 3.0) + uz * (3.0 * uz - 3.0)) + (OMEGA_12 * rho);
f13 = (OMEGA_13 * rho) * (ux * (3.0 * ux + 9.0 * uz - 3.0) - 1.5 * (uy * uy) + uz * (3.0 * uz - 3.0)) + (OMEGA_13 * rho);
f14 = (OMEGA_14 * rho) * (-1.5 * (ux * ux) + uy * (3.0 * uy + 9.0 * uz - 3.0) + uz * (3.0 * uz - 3.0)) + (OMEGA_14 * rho);
f15 = (OMEGA_15 * rho) * (ux * (3.0 * ux + 9.0 * uz + 3.0) - 1.5 * (uy * uy) + uz * (3.0 * uz + 3.0)) + (OMEGA_15 * rho);
f16 = (OMEGA_16 * rho) * (-1.5 * (ux * ux) + uy * (3.0 * uy + 9.0 * uz + 3.0) + uz * (3.0 * uz + 3.0)) + (OMEGA_16 * rho);
f17 = (OMEGA_17 * rho) * (ux * (3.0 * ux - 9.0 * uz - 3.0) - 1.5 * (uy * uy) + uz * (3.0 * uz + 3.0)) + (OMEGA_17 * rho);
f18 = (OMEGA_18 * rho) * (-1.5 * (ux * ux) + uy * (3.0 * uy - 9.0 * uz - 3.0) + uz * (3.0 * uz + 3.0)) + (OMEGA_18 * rho);
} else if (is_bounceback(cell_type)) {
real_t tmp = f1;
f1 = f3;
f3 = tmp;
tmp = f2;
f2 = f4;
f4 = tmp;
tmp = f6;
f6 = f5;
f5 = tmp;
tmp = f7;
f7 = f9;
f9 = tmp;
tmp = f8;
f8 = f10;
f10 = tmp;
tmp = f16;
f16 = f14;
f14 = tmp;
tmp = f18;
f18 = f12;
f12 = tmp;
tmp = f15;
f15 = f13;
f13 = tmp;
tmp = f17;
f17 = f11;
f11 = tmp;
}
/*** Collision ***/
if (is_collision(cell_type)) {
const real_t fnew0 = (OMEGA_0 * rho) * (-1.5 * (ux * ux) - 1.5 * (uy * uy) - 1.5 * (uz * uz)) + (OMEGA_0 * rho);
const real_t fnew1 = (OMEGA_1 * rho) * (ux * (3.0 * ux + 3.0) - 1.5 * (uy * uy) - 1.5 * (uz * uz)) + (OMEGA_1 * rho);
const real_t fnew2 = (OMEGA_2 * rho) * (-1.5 * (ux * ux) + uy * (3.0 * uy + 3.0) - 1.5 * (uz * uz)) + (OMEGA_2 * rho);
const real_t fnew3 = (OMEGA_3 * rho) * (ux * (3.0 * ux - 3.0) - 1.5 * (uy * uy) - 1.5 * (uz * uz)) + (OMEGA_3 * rho);
const real_t fnew4 = (OMEGA_4 * rho) * (-1.5 * (ux * ux) + uy * (3.0 * uy - 3.0) - 1.5 * (uz * uz)) + (OMEGA_4 * rho);
const real_t fnew5 = (OMEGA_5 * rho) * (-1.5 * (ux * ux) - 1.5 * (uy * uy) + uz * (3.0 * uz - 3.0)) + (OMEGA_5 * rho);
const real_t fnew6 = (OMEGA_6 * rho) * (-1.5 * (ux * ux) - 1.5 * (uy * uy) + uz * (3.0 * uz + 3.0)) + (OMEGA_6 * rho);
const real_t fnew7 = (OMEGA_7 * rho) * (ux * (3.0 * ux + 9.0 * uy + 3.0) + uy * (3.0 * uy + 3.0) - 1.5 * (uz * uz)) + (OMEGA_7 * rho);
const real_t fnew8 = (OMEGA_8 * rho) * (ux * (3.0 * ux - 9.0 * uy - 3.0) + uy * (3.0 * uy + 3.0) - 1.5 * (uz * uz)) + (OMEGA_8 * rho);
const real_t fnew9 = (OMEGA_9 * rho) * (ux * (3.0 * ux + 9.0 * uy - 3.0) + uy * (3.0 * uy - 3.0) - 1.5 * (uz * uz)) + (OMEGA_9 * rho);
const real_t fnew10 = (OMEGA_10 * rho) * (ux * (3.0 * ux - 9.0 * uy + 3.0) + uy * (3.0 * uy - 3.0) - 1.5 * (uz * uz)) + (OMEGA_10 * rho);
const real_t fnew11 = (OMEGA_11 * rho) * (ux * (3.0 * ux - 9.0 * uz + 3.0) - 1.5 * (uy * uy) + uz * (3.0 * uz - 3.0)) + (OMEGA_11 * rho);
const real_t fnew12 = (OMEGA_12 * rho) * (-1.5 * (ux * ux) + uy * (3.0 * uy - 9.0 * uz + 3.0) + uz * (3.0 * uz - 3.0)) + (OMEGA_12 * rho);
const real_t fnew13 = (OMEGA_13 * rho) * (ux * (3.0 * ux + 9.0 * uz - 3.0) - 1.5 * (uy * uy) + uz * (3.0 * uz - 3.0)) + (OMEGA_13 * rho);
const real_t fnew14 = (OMEGA_14 * rho) * (-1.5 * (ux * ux) + uy * (3.0 * uy + 9.0 * uz - 3.0) + uz * (3.0 * uz - 3.0)) + (OMEGA_14 * rho);
const real_t fnew15 = (OMEGA_15 * rho) * (ux * (3.0 * ux + 9.0 * uz + 3.0) - 1.5 * (uy * uy) + uz * (3.0 * uz + 3.0)) + (OMEGA_15 * rho);
const real_t fnew16 = (OMEGA_16 * rho) * (-1.5 * (ux * ux) + uy * (3.0 * uy + 9.0 * uz + 3.0) + uz * (3.0 * uz + 3.0)) + (OMEGA_16 * rho);
const real_t fnew17 = (OMEGA_17 * rho) * (ux * (3.0 * ux - 9.0 * uz - 3.0) - 1.5 * (uy * uy) + uz * (3.0 * uz + 3.0)) + (OMEGA_17 * rho);
const real_t fnew18 = (OMEGA_18 * rho) * (-1.5 * (ux * ux) + uy * (3.0 * uy - 9.0 * uz - 3.0) + uz * (3.0 * uz + 3.0)) + (OMEGA_18 * rho);
#undef UNROLL_X
#define UNROLL_X(i) f##i = compute_bgk(f##i, fnew##i);
UNROLL_19();
}
const int lx = get_local_id(0);
bool alive = true;
if (is_wall(cell_type)) {
alive = false;
}
bool propagation_only = false;
if (is_corner(cell_type)) {
propagation_only = true;
}
__local real_t _f1[LWS];
__local real_t _f7[LWS];
__local real_t _f10[LWS];
__local real_t _f11[LWS];
__local real_t _f15[LWS];
#define _f3 _f1
#define _f8 _f10
#define _f9 _f7
#define _f13 _f15
#define _f17 _f11
_f1[lx] = -1.0;
barrier(CLK_LOCAL_MEM_FENCE);
if (!propagation_only && alive)
{
// Update the 0-th direction distribution
f_stream[IDxyzq(id, 0)] = f0; // 0 0 0
// Propagation in directions orthogonal to the X axis (global memory)
if (y < (DIM-1)) f_stream[IDXYZQ( x, y+1, z, 2)] = f2; // 0 +1 0
if (y > 0 ) f_stream[IDXYZQ( x, y-1, z, 4)] = f4; // 0 -1 0
if (z < (DIM-1)) f_stream[IDXYZQ( x, y, z+1, 6)] = f6; // 0 0 +1
if (z > 0 ) f_stream[IDXYZQ( x, y, z-1, 5)] = f5; // 0 0 -1
if (y < (DIM-1) && z < (DIM-1)) f_stream[IDXYZQ( x, y+1, z+1, 16)] = f16; // 0 +1 +1
if (y > 0 && z < (DIM-1)) f_stream[IDXYZQ( x, y-1, z+1, 18)] = f18; // 0 -1 +1
if (y < (DIM-1) && z > 0 ) f_stream[IDXYZQ( x, y+1, z-1, 12)] = f12; // 0 +1 -1
if (y > 0 && z > 0 ) f_stream[IDXYZQ( x, y-1, z-1, 14)] = f14; // 0 -1 -1
// E propagation in shared memory
if (x < (DIM-1)) {
// Note: propagation to ghost nodes is done directly in global memory as there
// are no threads running for the ghost nodes.
if (lx < (LWS-1) && x != (DIM-2)) {
_f1[lx + 1] = f1;
_f7[lx + 1] = f7;
_f10[lx + 1] = f10;
_f11[lx + 1] = f11;
_f15[lx + 1] = f15;
// E propagation in global memory (at right block boundary)
} else {
f_stream[IDXYZQ( x+1, y, z, 1)] = f1; // +1 0 0
if (y < (DIM-1)) f_stream[IDXYZQ( x+1, y+1, z, 7)] = f7; // +1 +1 0
if (y > 0 ) f_stream[IDXYZQ( x+1, y-1, z, 10)] = f10; // +1 -1 0
if (z < (DIM-1)) f_stream[IDXYZQ( x+1, y, z+1, 15)] = f15; // +1 0 +1
if (z > 0 ) f_stream[IDXYZQ( x+1, y, z-1, 11)] = f11; // +1 0 -1
}
}
}
barrier(CLK_LOCAL_MEM_FENCE);
// Save locally propagated distributions into global memory.
// The leftmost thread is not updated in this block.
if (lx > 0 && x < DIM && !propagation_only && alive)
{
if (_f1[lx] != -1.0) {
f_stream[IDXYZQ( x, y, z, 1)] = _f1[lx]; // 0 0 0
if (y < (DIM-1)) f_stream[IDXYZQ( x, y+1, z, 7)] = _f7[lx]; // 0 +1 0
if (y > 0 ) f_stream[IDXYZQ( x, y-1, z, 10)] = _f10[lx]; // 0 -1 0
if (z < (DIM-1)) f_stream[IDXYZQ( x, y, z+1, 15)] = _f15[lx]; // 0 0 +1
if (z > 0 ) f_stream[IDXYZQ( x, y, z-1, 11)] = _f11[lx]; // 0 0 -1
}
}
barrier(CLK_LOCAL_MEM_FENCE);
// Refill the propagation buffer with sentinel values.
_f1[lx] = -1.0;
barrier(CLK_LOCAL_MEM_FENCE);
if (!propagation_only && alive)
{
// W propagation in shared memory
// Note: propagation to ghost nodes is done directly in global memory as there
// are no threads running for the ghost nodes.
if ((lx > 1 || (lx > 0 && x >= LWS)) && !propagation_only) {
_f3[lx - 1] = f3;
_f8[lx - 1] = f8;
_f9[lx - 1] = f9;
_f13[lx - 1] = f13;
_f17[lx - 1] = f17;
// W propagation in global memory (at left block boundary)
} else if (x > 0) {
f_stream[IDXYZQ( x-1, y, z, 3)] = f3; // -1 0 0
if (y < (DIM-1)) f_stream[IDXYZQ( x-1, y+1, z, 8)] = f8; // -1 +1 0
if (y > 0 ) f_stream[IDXYZQ( x-1, y-1, z, 9)] = f9; // -1 -1 0
if (z < (DIM-1)) f_stream[IDXYZQ( x-1, y, z+1, 17)] = f17; // -1 0 +1
if (z > 0 ) f_stream[IDXYZQ( x-1, y, z-1, 13)] = f13; // -1 0 -1
}
}
barrier(CLK_LOCAL_MEM_FENCE);
// The rightmost thread is not updated in this block.
if (lx < (LWS-1) && x < (DIM-1) && !propagation_only && alive)
{
if (_f1[lx] != -1.0) {
f_stream[IDXYZQ( x, y, z, 3)] = _f3[lx]; // 0 0 0
if (y < (DIM-1)) f_stream[IDXYZQ( x, y+1, z, 8)] = _f8[lx]; // 0 +1 0
if (y > 0 ) f_stream[IDXYZQ( x, y-1, z, 9)] = _f9[lx]; // 0 -1 0
if (z < (DIM-1)) f_stream[IDXYZQ( x, y, z+1, 17)] = _f17[lx]; // 0 0 +1
if (z > 0 ) f_stream[IDXYZQ( x, y, z-1, 13)] = _f13[lx]; // 0 0 -1
}
}
}
#endif