-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathhelpers.py
365 lines (287 loc) · 12.3 KB
/
helpers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
# Torch modules
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.tensorboard import SummaryWriter
# general modules
import pandas as pd
import numpy as np
import copy
from sklearn.exceptions import NotFittedError
import copy
import time
from sklearn.exceptions import NotFittedError
def equally_spaced_initializer(n_memb: int, n_statevars: int, minval: float = -1.5, maxval: float = 1.5) -> torch.Tensor:
"""Custom weight initializer: equally spaced weights along an operating range of [minval, maxval].
Args:
n_memb (int): no. of membership functions.
n_statevars (int): no. of state variables.
minval (float, optional): minimum value. Defaults to -1.5.
maxval (float, optional): maximum value. Defaults to 1.5.
Returns:
torch.Tensor: Initialized parameters.
"""
linspace = torch.reshape(torch.linspace(minval, maxval, n_memb),
(-1, 1))
return nn.Parameter(linspace.repeat(1, n_statevars))
class _RunManager():
def __init__(self, epochs: int, hparams_dict: dict, name: str, n_statevars: int, n_rules: int, n_input: int, patience: int = 10, delta: int = 0.0001):
"""Run Manager keeps track of epochs, (best) losses and prints the progress bars. Also controls the tensorboard.
Args:
epochs (int): No. of epochs.
hparams_dict (dict): (Additional) hyperparameters to store in tensorboard.
name (str)
n_statevars (int): No. of state variables.
n_rules (int): No. of rules.
n_input (int): No. of inputs.
patience (int, optional): Patience parameter. Defaults to 10.
delta (int, optional): Delta parameter. Defaults to 0.0001.
"""
# sanfis parameters
self.epochs = epochs
self.name = name
self.hparams_dict = hparams_dict
self.n_statevars = n_statevars
self.n_input = n_input
self.n_rules = n_rules
# early stopping criteria
self.patience = patience
self.iter = 0
self.counter = 0
self.best_loss = float('inf')
self.global_best_loss = float('inf')
self.early_stop = False
self.delta = delta
# train and valid curve
self.train_curve_iter = [] # train loss per iteration
self.train_curve = [] # train loss per epoch
self.valid_curve = [] # valid loss per epoch
# epoch counter
self.epoch = 0
# progress bar
self.start_time = time.time()
self.pbar_step = self.epochs / 100
self.tbwriter = None
def __call__(self, model_weights, epoch, train_loss, valid_loss, pbar):
self.epoch += 1
# track losses
self._track_losses(train_loss, valid_loss)
loss = self.valid_curve[-1].item()
# check early stop criteria
if loss + self.delta < self.best_loss:
self.best_loss = loss
self.epoch = epoch
self.counter = 0
if loss < self.global_best_loss:
self.global_best_loss = loss
self.save_checkpoint(model_weights)
else:
self.counter += 1
if self.counter >= self.patience:
self.early_stop = True
# update progress bar
if self.epoch % self.pbar_step == 0:
pbar.update(self.pbar_step)
pbar.set_postfix(
train_loss=round(self.train_curve[-1].item(), 5), valid_loss=round(self.valid_curve[-1].item(), 5))
def get_writer(self, logdir):
if logdir == None:
logdir = 'logs/runs/'
logDATE = __import__("datetime").datetime.now().strftime(
'%Y_%m_%d_%H%M%S')
logHPARAM = ''.join(
[f'_{d}{self.hparams_dict[d]}' for d in self.hparams_dict])
logNAME = f'-S{self.n_statevars}_N{self.n_input}_R{self.n_rules}{logHPARAM}'
writer = SummaryWriter(logdir + logDATE + logNAME, comment=logNAME)
# writer = SummaryWriter(comment=logNAME) # alternative
self.tbwriter = writer
def save_checkpoint(self, weights):
self.best_weights = copy.deepcopy(weights)
def load_checkpoint(self):
return self.best_weights
def reset_earlystopper(self):
self.counter = 0
self.best_loss = float('inf')
self.early_stop = False
def _track_losses(self, train_loss, valid_loss):
self.train_curve.append(sum(train_loss) / len(train_loss))
self.train_curve_iter.extend(train_loss)
self.valid_curve.append(sum(valid_loss) / len(valid_loss))
if self.tbwriter:
self.tbwriter.add_scalar(
'Loss/train', self.train_curve[-1], self.epoch)
self.tbwriter.add_scalar(
'Loss/valid', self.valid_curve[-1], self.epoch)
# # add histograms of weights
# for name, weight in self.named_parameters():
# writer.add_histogram(name, weight, epoch)
def end_training(self):
self.run_time = time.time() - self.start_time
if self.tbwriter:
# log hparams
HPARAMS = {"model": self.name,
"n_statevars": self.n_statevars,
"n_input": self.n_input,
"n_rules": self.n_rules,
**self.hparams_dict}
self.tbwriter.add_hparams(HPARAMS,
{
"train_loss": self.train_curve[-1],
"valid_loss": self.global_best_loss,
},
)
# close writer
self.tbwriter.flush()
self.tbwriter.close()
def get_report_history(self):
report = {**self.hparams_dict,
"model": self.name,
"n_statevars": self.n_statevars,
"n_input": self.n_input,
"n_rules": self.n_rules,
"run_time": self.run_time}
history = pd.DataFrame({'train_curve': np.array(
self.train_curve), 'valid_curve': np.array(self.valid_curve)}).rename_axis('epoch')
return report, history
class _FastTensorDataLoader():
"""
A DataLoader-like object for a set of tensors that can be much faster than
TensorDataset + DataLoader because dataloader grabs individual indices of
the dataset and calls cat (slow).
https://discuss.pytorch.org/t/dataloader-much-slower-than-manual-batching/27014/6
"""
def __init__(self, tensors, batch_size=32, shuffle=False):
"""
Initialize a _FastTensorDataLoader.
:param *tensors: tensors to store. Must have the same length @ dim 0.
:param batch_size: batch size to load.
:param shuffle: if True, shuffle the data *in-place* whenever an
iterator is created out of this object.
:returns: A _FastTensorDataLoader.
"""
assert all(t.shape[0] == tensors[0].shape[0] for t in tensors)
self.dataset = tensors
self.dataset_len = self.dataset[0].shape[0]
self.batch_size = batch_size
self.shuffle = shuffle
# Calculate # batches
n_batches, remainder = divmod(self.dataset_len, self.batch_size)
if remainder > 0:
n_batches += 1
self.n_batches = n_batches
def __iter__(self):
if self.shuffle:
self.indices = torch.randperm(self.dataset_len)
else:
self.indices = None
self.i = 0
return self
def __next__(self):
if self.i >= self.dataset_len:
raise StopIteration
if self.indices is not None:
indices = self.indices[self.i:self.i + self.batch_size]
batch = tuple(torch.index_select(t, 0, indices)
for t in self.dataset)
else:
batch = tuple(t[self.i:self.i + self.batch_size]
for t in self.dataset)
self.i += self.batch_size
return batch
def __len__(self):
return self.n_batches
class StandardScaler(object):
def __init__(self):
self.fitted = False
def fit(self, train_dl: _FastTensorDataLoader):
self.S_mean, self.X_mean, self.y_mean = [
data.mean(axis=0) for data in train_dl.dataset]
self.S_std, self.X_std, self.y_std = [
data.std(axis=0) for data in train_dl.dataset]
self.fitted = True
def transform(self, dataloader: _FastTensorDataLoader) -> _FastTensorDataLoader:
if not self.fitted:
raise NotFittedError(
'Error: The StandardScaler instance is not yet fitted. Call "fit" with appropriate arguments before using this estimator.')
transformed_dataloder = copy.deepcopy(dataloader)
transformed_dataloder.dataset[0] = (
transformed_dataloder.dataset[0] - self.S_mean) / self.S_std
transformed_dataloder.dataset[1] = (
transformed_dataloder.dataset[1] - self.X_mean) / self.X_std
# correct for zero division
transformed_dataloder.dataset[1][transformed_dataloder.dataset[1].isnan(
)] = 0.0
# if real output required
if len(transformed_dataloder.dataset) == 3:
transformed_dataloder.dataset[2] = (
transformed_dataloder.dataset[2] - self.y_mean) / self.y_std
return transformed_dataloder
def transform_X(self, X, inverse=False):
if inverse:
return X * self.X_std + self.X_mean
return (X - self.X_mean) / self.X_std
def transform_S(self, S, inverse=False):
if inverse:
return S * self.S_std + self.S_mean
return (S - self.S_mean) / self.S_std
def transform_y(self, y, inverse=False):
if inverse:
return y * self.y_std + self.y_mean
return (y - self.y_mean) / self.y_std
def fit_transform(self, dataloader: _FastTensorDataLoader):
self.fit(dataloader)
return self.transform(dataloader)
class NoneScaler(object):
"""
This class does nothing.
"""
def fit(self, train_dl: _FastTensorDataLoader):
pass
def transform(self, dataloader: _FastTensorDataLoader):
return dataloader
def transform_X(self, X, inverse=False):
return X
def transform_S(self, S, inverse=False):
return S
def transform_y(self, y, inverse=False):
return y
def fit_transform(self, dataloader: _FastTensorDataLoader):
self.fit(dataloader)
return self.transform(dataloader)
class DataScaler(object):
"""Class to perform data scaling operations
The scaling technique is defined by the ``scaler`` parameter which takes one of the
following values:
- ``'Std'`` for standarizing the data to follow a normal distribution.
- ``'None'`` No transformation at all.
----------
normalize : str
Type of scaling to be performed. Possible values are ``'Std'`` or ``None``.
"""
def __init__(self, scaler: str = 'Std'):
if scaler == 'Std':
self.scaler = StandardScaler()
elif scaler == 'None':
self.scaler = NoneScaler()
else:
raise ValueError(
f"Scaler can normalize via 'Std' or 'None', but {scaler} was given.")
def fit_transform(self, train_dl: _FastTensorDataLoader):
"""Method that estimates an scaler object using the data in ``dataset`` and scales the data in ``dataset``
"""
return self.scaler.fit_transform(train_dl)
def transform(self, dataloader: _FastTensorDataLoader) -> _FastTensorDataLoader:
"""Method that scales the data in ``dataloader``
"""
# store information from the data for plotting purposes
# see plotmfs() from sanfis class
self.lower_s = [np.percentile(s, 5) for s in dataloader.dataset[0].T]
self.higher_s = [np.percentile(s, 95) for s in dataloader.dataset[0].T]
# self.max_s =
return self.scaler.transform(dataloader)
def transform_X(self, X, inverse: bool = False):
return self.scaler.transform_X(X, inverse)
def transform_S(self, S, inverse: bool = False):
return self.scaler.transform_S(S, inverse)
def transform_y(self, y, inverse: bool = False):
return self.scaler.transform_y(y, inverse)