-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
197 lines (154 loc) · 5.82 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
import torch.nn as nn
import torch.nn.functional as F
from torchvision.models import efficientnet_b1, efficientnet_b4, efficientnet_v2_l
import torchvision.models as models
from facenet_pytorch import InceptionResnetV1
import torch
class BaseModel(nn.Module):
def __init__(self, num_classes):
super().__init__()
self.conv1 = nn.Conv2d(3, 32, kernel_size=7, stride=1)
self.conv2 = nn.Conv2d(32, 64, kernel_size=3, stride=1)
self.conv3 = nn.Conv2d(64, 128, kernel_size=3, stride=1)
self.dropout1 = nn.Dropout(0.25)
self.dropout2 = nn.Dropout(0.25)
self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
self.fc = nn.Linear(128, num_classes)
def forward(self, x):
x = self.conv1(x)
x = F.relu(x)
x = self.conv2(x)
x = F.relu(x)
x = F.max_pool2d(x, 2)
x = self.dropout1(x)
x = self.conv3(x)
x = F.relu(x)
x = F.max_pool2d(x, 2)
x = self.dropout2(x)
x = self.avgpool(x)
x = x.view(-1, 128)
return self.fc(x)
# Custom Model Template
class MyModel(nn.Module):
def __init__(self, num_classes):
super().__init__()
self.backbone = efficientnet_b1(pretrained=True)
self.n_features = self.backbone.classifier[1].out_features
self.classifier = nn.Linear(self.n_features, num_classes)
def forward(self, x):
x = self.backbone(x)
x = self.classifier(x)
return x
class EfficientNet_B1(nn.Module):
def __init__(self, num_classes):
super().__init__()
self.model = models.efficientnet_b1(weights=models.EfficientNet_B1_Weights.DEFAULT)
self.model.classifier = nn.Sequential(
nn.Dropout(p=0.8, inplace=True),
nn.Linear(1280, num_classes, bias=True)
)
self.name = "EfficientNet_B1"
self.init_params()
def forward(self, x):
x = self.model(x)
return x
def init_params(self):
nn.init.kaiming_uniform_(self.model.classifier[1].weight)
nn.init.zeros_(self.model.classifier[1].bias)
class EfficientNet_B1_MD(nn.Module):
def __init__(self, num_classes):
super().__init__()
self.model = models.efficientnet_b1(weights=models.EfficientNet_B1_Weights.DEFAULT)
self.model.classifier = nn.Linear(1280, 1000, bias=True)
self.last_bn = nn.BatchNorm1d(1000, eps=0.001, momentum=0.1, affine=True)
self.logits = nn.Linear(1000, num_classes, bias=True)
self.dropout = nn.Dropout(0.2)
self.name = "EfficientNet_B1_MD"
self.init_weights(self.model.classifier)
self.init_weights(self.logits)
self.init_weights(self.last_bn)
def forward(self, x):
x = self.model(x)
x = self.last_bn(x)
logits = torch.mean(
torch.stack(
[self.logits(self.dropout(x)) for _ in range(16)], dim=0,
),
dim=0,
)
return logits
def init_weights(self, m):
if isinstance(m, nn.Linear):
nn.init.kaiming_uniform_(m.weight)
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.BatchNorm1d):
nn.init.constant_(m.weight.data, 1)
nn.init.constant_(m.bias.data, 0)
class Identity(nn.Module):
def __init__(self):
super().__init__()
def forward(self, x):
return x
class EfficientnetB1_MD2(nn.Module):
def __init__(self, num_classes) -> None:
super().__init__()
self.base_model = models.efficientnet_b1(weights=models.EfficientNet_B1_Weights.DEFAULT)
self.base_model.classifier = Identity()
self.dropouts = nn.ModuleList([nn.Dropout(0.2) for _ in range(16)])
self.fc = nn.Linear(1280, num_classes)
self.init_weights(self.fc)
def forward(self, x):
x = self.base_model(x)
for i, dropout in enumerate(self.dropouts):
if i == 0:
out = dropout(x.clone())
out = self.fc(out)
else:
temp_out = dropout(x.clone())
out += self.fc(temp_out)
return torch.sigmoid(out/len(self.dropouts))
def init_weights(self, m):
if isinstance(m, nn.Linear):
nn.init.kaiming_uniform_(m.weight)
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.BatchNorm1d):
nn.init.constant_(m.weight.data, 1)
nn.init.constant_(m.bias.data, 0)
class InceptionResnet(nn.Module):
"""
Total params: 27,979,383
Trainable params: 27,979,383
Non-trainable params: 0
----------------------------------------------------------------
Input size (MB): 2.25
Forward/backward pass size (MB): 840.53
Params size (MB): 106.73
Estimated Total Size (MB): 949.52
"""
def __init__(self, num_classes):
super().__init__()
self.backbone = InceptionResnetV1(pretrained="vggface2", classify=True,)
self.n_features = self.backbone.logits.out_features
self.classifier = nn.Linear(self.n_features, num_classes)
self.init_weights(self.classifier)
def forward(self, x):
x = self.backbone(x)
x = self.classifier(x)
return x
def init_weights(self, m):
nn.init.kaiming_uniform_(m.weight)
nn.init.constant_(m.bias, 0)
class Efficientnet_v2_l(nn.Module):
def __init__(self, num_classes):
super().__init__()
self.backbone = efficientnet_v2_l(weight="DEFAULT")
self.n_features = self.backbone.classifier[1].out_features
self.classifier = nn.Linear(self.n_features, num_classes)
self.init_weights(self.classifier)
def forward(self, x):
x = self.backbone(x)
x = self.classifier(x)
return x
def init_weights(self, m):
nn.init.kaiming_uniform_(m.weight)
nn.init.constant_(m.bias, 0)