-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathkfold.py
154 lines (112 loc) · 4.34 KB
/
kfold.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
import os
import json
import numpy as np
import pandas as pd
import argparse
import random
from sklearn.model_selection import StratifiedGroupKFold
from tqdm import tqdm
## reference: https://stages.ai/competitions/191/discussion/talk/post/1330
path = os.path.dirname(os.path.abspath(__file__))
data_path = "/opt/ml/input/data"
annotations_path = os.path.join(data_path, "train_all.json")
def main(args):
random.seed(args.random_seed)
with open(annotations_path) as f:
data = json.load(f)
images = data["images"]
categories = data["categories"]
annotations = data["annotations"]
annotations_df = pd.DataFrame.from_dict(annotations)
var = [(ann["image_id"], ann["category_id"]) for ann in data["annotations"]]
X = np.ones((len(data["annotations"]), 1))
y = np.array([v[1] for v in var])
groups = np.array([v[0] for v in var])
cv = StratifiedGroupKFold(
n_splits=args.n_split, shuffle=True, random_state=args.random_seed
)
path = args.path
if not os.path.exists(path):
os.mkdir(path)
for idx, (train_index, val_index) in tqdm(
enumerate(cv.split(X, y, groups)), total=args.n_split
):
train_dict = dict()
val_dict = dict()
for i in ["info", "licenses", "categories"]:
train_dict[i] = data[i]
val_dict[i] = data[i]
train_index = list(set(groups[train_index]))
val_index = list(set(groups[val_index]))
train_index.sort()
val_index.sort()
train_dict["images"] = np.array(images)[train_index].tolist()
val_dict["images"] = np.array(images)[val_index].tolist()
train_dict["annotations"] = annotations_df[
annotations_df["image_id"].isin(train_index)
].to_dict("records")
val_dict["annotations"] = annotations_df[
annotations_df["image_id"].isin(val_index)
].to_dict("records")
train_dir = os.path.join(path, f"train_fold{idx}.json")
val_dir = os.path.join(path, f"val_fold{idx}.json")
with open(train_dir, "w") as train_file:
json.dump(train_dict, train_file)
with open(val_dir, "w") as val_file:
json.dump(val_dict, val_file)
print("Done Make files")
def update_dataset(index, mode, input_json, output_dir):
with open(input_json) as json_reader:
dataset = json.load(json_reader)
images = dataset["images"]
annotations = dataset["annotations"]
categories = dataset["categories"]
image_ids = [x.get("id") for x in images]
image_ids.sort()
image_ids_train = set(image_ids)
train_images = [x for x in images if x.get("id") in image_ids_train]
train_id2id = dict()
for i in range(len(train_images)):
train_id2id[train_images[i]["id"]] = i
train_images[i]["id"] = i
train_annotations = [x for x in annotations if x.get("image_id") in image_ids_train]
for i in range(len(train_annotations)):
train_annotations[i]["image_id"] = train_id2id[train_annotations[i]["image_id"]]
train_data = {
"images": train_images,
"annotations": train_annotations,
"categories": categories,
}
output_train_json = os.path.join(output_dir, f"{mode}_fold{index}.json")
print(f"write {output_train_json}")
with open(output_train_json, "w") as train_writer:
json.dump(train_data, train_writer)
def loop_n_split(n):
stratified_path = os.path.join(path, "/opt/ml/input/data", "stratified_group_kfold")
print("image id's updating...")
for i in range(n):
update_dataset(
index=i,
mode="train",
input_json=os.path.join(stratified_path, f"train_fold{i}.json"),
output_dir=stratified_path,
)
update_dataset(
index=i,
mode="val",
input_json=os.path.join(stratified_path, f"val_fold{i}.json"),
output_dir=stratified_path,
)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--path",
"-p",
type=str,
default=os.path.join(path, "/opt/ml/input/data", "stratified_group_kfold"),
)
parser.add_argument("--n_split", "-n", type=int, default=5)
parser.add_argument("--random_seed", type=int, default=42)
args = parser.parse_args()
main(args)
loop_n_split(args.n_split)