-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathdeteval.py
349 lines (300 loc) · 16 KB
/
deteval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
import math
from collections import namedtuple
from copy import deepcopy
import numpy as np
def default_evaluation_params():
"""
default_evaluation_params: Default parameters to use for the validation and evaluation.
"""
return {
'AREA_RECALL_CONSTRAINT' : 0.8,
'AREA_PRECISION_CONSTRAINT' : 0.4,
'EV_PARAM_IND_CENTER_DIFF_THR': 1,
'MTYPE_OO_O':1.,
'MTYPE_OM_O':0.8,
'MTYPE_OM_M':1.,
'GT_SAMPLE_NAME_2_ID':'gt_img_([0-9]+).txt',
'DET_SAMPLE_NAME_2_ID':'res_img_([0-9]+).txt',
'CRLF':False # Lines are delimited by Windows CRLF format
}
def calc_deteval_metrics(pred_bboxes_dict, gt_bboxes_dict, transcriptions_dict=None,
eval_hparams=None, bbox_format='rect', verbose=False):
"""
현재는 rect(xmin, ymin, xmax, ymax) 형식의 bounding box만 지원함. 다른 형식(quadrilateral,
poligon, etc.)의 데이터가 들어오면 외접하는 rect로 변환해서 이용하고 있음.
"""
def one_to_one_match(row, col):
cont = 0
for j in range(len(recallMat[0])):
if recallMat[row,j] >= eval_hparams['AREA_RECALL_CONSTRAINT'] and precisionMat[row,j] >= eval_hparams['AREA_PRECISION_CONSTRAINT'] :
cont = cont +1
if (cont != 1):
return False
cont = 0
for i in range(len(recallMat)):
if recallMat[i,col] >= eval_hparams['AREA_RECALL_CONSTRAINT'] and precisionMat[i,col] >= eval_hparams['AREA_PRECISION_CONSTRAINT'] :
cont = cont +1
if (cont != 1):
return False
if recallMat[row,col] >= eval_hparams['AREA_RECALL_CONSTRAINT'] and precisionMat[row,col] >= eval_hparams['AREA_PRECISION_CONSTRAINT'] :
return True
return False
def num_overlaps_gt(gtNum):
cont = 0
for detNum in range(len(detRects)):
if detNum not in detDontCareRectsNum:
if recallMat[gtNum,detNum] > 0 :
cont = cont +1
return cont
def num_overlaps_det(detNum):
cont = 0
for gtNum in range(len(recallMat)):
if gtNum not in gtDontCareRectsNum:
if recallMat[gtNum,detNum] > 0 :
cont = cont +1
return cont
def is_single_overlap(row, col):
if num_overlaps_gt(row)==1 and num_overlaps_det(col)==1:
return True
else:
return False
def one_to_many_match(gtNum):
many_sum = 0
detRects = []
for detNum in range(len(recallMat[0])):
if gtRectMat[gtNum] == 0 and detRectMat[detNum] == 0 and detNum not in detDontCareRectsNum:
if precisionMat[gtNum,detNum] >= eval_hparams['AREA_PRECISION_CONSTRAINT'] :
many_sum += recallMat[gtNum,detNum]
detRects.append(detNum)
if round(many_sum,4) >=eval_hparams['AREA_RECALL_CONSTRAINT'] :
return True,detRects
else:
return False,[]
def many_to_one_match(detNum):
many_sum = 0
gtRects = []
for gtNum in range(len(recallMat)):
if gtRectMat[gtNum] == 0 and detRectMat[detNum] == 0 and gtNum not in gtDontCareRectsNum:
if recallMat[gtNum,detNum] >= eval_hparams['AREA_RECALL_CONSTRAINT'] :
many_sum += precisionMat[gtNum,detNum]
gtRects.append(gtNum)
if round(many_sum,4) >=eval_hparams['AREA_PRECISION_CONSTRAINT'] :
return True,gtRects
else:
return False,[]
def area(a, b):
dx = min(a.xmax, b.xmax) - max(a.xmin, b.xmin) + 1
dy = min(a.ymax, b.ymax) - max(a.ymin, b.ymin) + 1
if (dx>=0) and (dy>=0):
return dx*dy
else:
return 0.
def center(r):
x = float(r.xmin) + float(r.xmax - r.xmin + 1) / 2.
y = float(r.ymin) + float(r.ymax - r.ymin + 1) / 2.
return Point(x,y)
def point_distance(r1, r2):
distx = math.fabs(r1.x - r2.x)
disty = math.fabs(r1.y - r2.y)
return math.sqrt(distx * distx + disty * disty )
def center_distance(r1, r2):
return point_distance(center(r1), center(r2))
def diag(r):
w = (r.xmax - r.xmin + 1)
h = (r.ymax - r.ymin + 1)
return math.sqrt(h * h + w * w)
if eval_hparams is None:
eval_hparams = default_evaluation_params()
if bbox_format != 'rect':
raise NotImplementedError
# bbox들이 rect 이외의 형식으로 되어있는 경우 rect 형식으로 변환
_pred_bboxes_dict, _gt_bboxes_dict= deepcopy(pred_bboxes_dict), deepcopy(gt_bboxes_dict)
pred_bboxes_dict, gt_bboxes_dict = dict(), dict()
for sample_name, bboxes in _pred_bboxes_dict.items():
# 원래 rect 형식이었으면 변환 없이 그대로 이용
if len(bboxes) > 0 and np.array(bboxes[0]).ndim == 1 and len(bboxes[0]) == 4:
pred_bboxes_dict = _pred_bboxes_dict
break
pred_bboxes_dict[sample_name] = []
for bbox in map(np.array, bboxes):
rect = [bbox[:, 0].min(), bbox[:, 1].min(), bbox[:, 0].max(), bbox[:, 1].max()]
pred_bboxes_dict[sample_name].append(rect)
for sample_name, bboxes in _gt_bboxes_dict.items():
# 원래 rect 형식이었으면 변환 없이 그대로 이용
if len(bboxes) > 0 and np.array(bboxes[0]).ndim == 1 and len(bboxes[0]) == 4:
gt_bboxes_dict = _gt_bboxes_dict
break
gt_bboxes_dict[sample_name] = []
for bbox in map(np.array, bboxes):
rect = [bbox[:, 0].min(), bbox[:, 1].min(), bbox[:, 0].max(), bbox[:, 1].max()]
gt_bboxes_dict[sample_name].append(rect)
perSampleMetrics = {}
methodRecallSum = 0
methodPrecisionSum = 0
Rectangle = namedtuple('Rectangle', 'xmin ymin xmax ymax')
Point = namedtuple('Point', 'x y')
numGt = 0
numDet = 0
for sample_name in gt_bboxes_dict:
recall = 0
precision = 0
hmean = 0
recallAccum = 0.
precisionAccum = 0.
gtRects = []
detRects = []
gtPolPoints = []
detPolPoints = []
gtDontCareRectsNum = [] # Array of Ground Truth Rectangles' keys marked as don't Care
detDontCareRectsNum = [] # Array of Detected Rectangles' matched with a don't Care GT
pairs = []
evaluationLog = ""
recallMat = np.empty([1, 1])
precisionMat = np.empty([1, 1])
pointsList = gt_bboxes_dict[sample_name]
if transcriptions_dict is None:
transcriptionsList = None
else:
transcriptionsList = transcriptions_dict[sample_name]
for n in range(len(pointsList)):
points = pointsList[n]
transcription = transcriptionsList[n]
dontCare = transcription == "###"
gtRect = Rectangle(*points)
gtRects.append(gtRect)
gtPolPoints.append(np.array(points).tolist())
if dontCare:
gtDontCareRectsNum.append( len(gtRects)-1 )
evaluationLog += "GT rectangles: " + str(len(gtRects)) + (" (" + str(len(gtDontCareRectsNum)) + " don't care)\n" if len(gtDontCareRectsNum)>0 else "\n")
if sample_name in pred_bboxes_dict:
pointsList = pred_bboxes_dict[sample_name]
for n in range(len(pointsList)):
points = pointsList[n]
detRect = Rectangle(*points)
detRects.append(detRect)
detPolPoints.append(np.array(points).tolist())
if len(gtDontCareRectsNum)>0 :
for dontCareRectNum in gtDontCareRectsNum:
dontCareRect = gtRects[dontCareRectNum]
intersected_area = area(dontCareRect,detRect)
rdDimensions = ( (detRect.xmax - detRect.xmin+1) * (detRect.ymax - detRect.ymin+1))
if (rdDimensions==0) :
precision = 0
else:
precision= intersected_area / rdDimensions
if (precision > eval_hparams['AREA_PRECISION_CONSTRAINT'] ):
detDontCareRectsNum.append( len(detRects)-1 )
break
evaluationLog += "DET rectangles: " + str(len(detRects)) + (" (" + str(len(detDontCareRectsNum)) + " don't care)\n" if len(detDontCareRectsNum)>0 else "\n")
if len(gtRects)==0:
recall = 1
precision = 0 if len(detRects)>0 else 1
if len(detRects)>0:
#Calculate recall and precision matrixs
outputShape=[len(gtRects),len(detRects)]
recallMat = np.empty(outputShape)
precisionMat = np.empty(outputShape)
gtRectMat = np.zeros(len(gtRects),np.int8)
detRectMat = np.zeros(len(detRects),np.int8)
for gtNum in range(len(gtRects)):
for detNum in range(len(detRects)):
rG = gtRects[gtNum]
rD = detRects[detNum]
intersected_area = area(rG,rD)
rgDimensions = ( (rG.xmax - rG.xmin+1) * (rG.ymax - rG.ymin+1) )
rdDimensions = ( (rD.xmax - rD.xmin+1) * (rD.ymax - rD.ymin+1))
recallMat[gtNum,detNum] = 0 if rgDimensions==0 else intersected_area / rgDimensions
precisionMat[gtNum,detNum] = 0 if rdDimensions==0 else intersected_area / rdDimensions
# Find one-to-one matches
evaluationLog += "Find one-to-one matches\n"
for gtNum in range(len(gtRects)):
for detNum in range(len(detRects)):
if gtRectMat[gtNum] == 0 and detRectMat[detNum] == 0 and gtNum not in gtDontCareRectsNum and detNum not in detDontCareRectsNum :
match = one_to_one_match(gtNum, detNum)
if match is True :
#in deteval we have to make other validation before mark as one-to-one
if is_single_overlap(gtNum, detNum) is True :
rG = gtRects[gtNum]
rD = detRects[detNum]
normDist = center_distance(rG, rD)
normDist /= diag(rG) + diag(rD)
normDist *= 2.0
if normDist < eval_hparams['EV_PARAM_IND_CENTER_DIFF_THR'] :
gtRectMat[gtNum] = 1
detRectMat[detNum] = 1
recallAccum += eval_hparams['MTYPE_OO_O']
precisionAccum += eval_hparams['MTYPE_OO_O']
pairs.append({'gt':gtNum,'det':detNum,'type':'OO'})
evaluationLog += "Match GT #" + str(gtNum) + " with Det #" + str(detNum) + "\n"
else:
evaluationLog += "Match Discarded GT #" + str(gtNum) + " with Det #" + str(detNum) + " normDist: " + str(normDist) + " \n"
else:
evaluationLog += "Match Discarded GT #" + str(gtNum) + " with Det #" + str(detNum) + " not single overlap\n"
# Find one-to-many matches
evaluationLog += "Find one-to-many matches\n"
for gtNum in range(len(gtRects)):
if gtNum not in gtDontCareRectsNum:
match,matchesDet = one_to_many_match(gtNum)
if match is True :
evaluationLog += "num_overlaps_gt=" + str(num_overlaps_gt(gtNum))
#in deteval we have to make other validation before mark as one-to-one
if num_overlaps_gt(gtNum)>=2 :
gtRectMat[gtNum] = 1
recallAccum += (eval_hparams['MTYPE_OO_O'] if len(matchesDet)==1 else eval_hparams['MTYPE_OM_O'])
precisionAccum += (eval_hparams['MTYPE_OO_O'] if len(matchesDet)==1 else eval_hparams['MTYPE_OM_O']*len(matchesDet))
pairs.append({'gt':gtNum,'det':matchesDet,'type': 'OO' if len(matchesDet)==1 else 'OM'})
for detNum in matchesDet :
detRectMat[detNum] = 1
evaluationLog += "Match GT #" + str(gtNum) + " with Det #" + str(matchesDet) + "\n"
else:
evaluationLog += "Match Discarded GT #" + str(gtNum) + " with Det #" + str(matchesDet) + " not single overlap\n"
# Find many-to-one matches
evaluationLog += "Find many-to-one matches\n"
for detNum in range(len(detRects)):
if detNum not in detDontCareRectsNum:
match,matchesGt = many_to_one_match(detNum)
if match is True :
#in deteval we have to make other validation before mark as one-to-one
if num_overlaps_det(detNum)>=2 :
detRectMat[detNum] = 1
recallAccum += (eval_hparams['MTYPE_OO_O'] if len(matchesGt)==1 else eval_hparams['MTYPE_OM_M']*len(matchesGt))
precisionAccum += (eval_hparams['MTYPE_OO_O'] if len(matchesGt)==1 else eval_hparams['MTYPE_OM_M'])
pairs.append({'gt':matchesGt,'det':detNum,'type': 'OO' if len(matchesGt)==1 else 'MO'})
for gtNum in matchesGt :
gtRectMat[gtNum] = 1
evaluationLog += "Match GT #" + str(matchesGt) + " with Det #" + str(detNum) + "\n"
else:
evaluationLog += "Match Discarded GT #" + str(matchesGt) + " with Det #" + str(detNum) + " not single overlap\n"
numGtCare = (len(gtRects) - len(gtDontCareRectsNum))
if numGtCare == 0:
recall = float(1)
precision = float(0) if len(detRects)>0 else float(1)
else:
recall = float(recallAccum) / numGtCare
precision = float(0) if (len(detRects) - len(detDontCareRectsNum))==0 else float(precisionAccum) / (len(detRects) - len(detDontCareRectsNum))
hmean = 0 if (precision + recall)==0 else 2.0 * precision * recall / (precision + recall)
methodRecallSum += recallAccum
methodPrecisionSum += precisionAccum
numGt += len(gtRects) - len(gtDontCareRectsNum)
numDet += len(detRects) - len(detDontCareRectsNum)
perSampleMetrics[sample_name] = {
'precision': precision,
'recall': recall,
'hmean': hmean,
'pairs': pairs,
'recall_matrix': [] if len(detRects)>100 else recallMat.tolist(),
'precision_matrix': [] if len(detRects)>100 else precisionMat.tolist(),
'gt_bboxes': gtPolPoints,
'det_bboxes': detPolPoints,
'gt_dont_care': gtDontCareRectsNum,
'det_dont_care': detDontCareRectsNum,
}
if verbose:
perSampleMetrics[sample_name].update(evaluation_log=evaluationLog)
methodRecall = 0 if numGt==0 else methodRecallSum/numGt
methodPrecision = 0 if numDet==0 else methodPrecisionSum/numDet
methodHmean = 0 if methodRecall + methodPrecision==0 else 2* methodRecall * methodPrecision / (methodRecall + methodPrecision)
methodMetrics = {'precision': methodPrecision, 'recall': methodRecall,'hmean': methodHmean}
resDict = {'calculated': True, 'Message': '', 'total': methodMetrics,
'per_sample': perSampleMetrics, 'eval_hparams': eval_hparams}
return resDict