This repository has been archived by the owner on Jul 15, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy patheval.py
161 lines (125 loc) · 5 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
#!/usr/bin/python2.7
# code from https://github.com/yabufarha/ms-tcn/blob/master/eval.py (MIT License)
# yabufarha adapted it from: https://github.com/colincsl/TemporalConvolutionalNetworks/blob/master/code/metrics.py (MIT License)
import os
import numpy as np
import argparse
def read_file(path):
with open(path, 'r') as f:
content = f.read()
f.close()
return content
def get_labels_start_end_time(frame_wise_labels, bg_class=["background"]):
labels = []
starts = []
ends = []
last_label = frame_wise_labels[0]
if frame_wise_labels[0] not in bg_class:
labels.append(frame_wise_labels[0])
starts.append(0)
for i in range(len(frame_wise_labels)):
if frame_wise_labels[i] != last_label:
if frame_wise_labels[i] not in bg_class:
labels.append(frame_wise_labels[i])
starts.append(i)
if last_label not in bg_class:
ends.append(i)
last_label = frame_wise_labels[i]
if last_label not in bg_class:
ends.append(i)
return labels, starts, ends
def levenstein(p, y, norm=False):
m_row = len(p)
n_col = len(y)
D = np.zeros([m_row+1, n_col+1], float)
for i in range(m_row+1):
D[i, 0] = i
for i in range(n_col+1):
D[0, i] = i
for j in range(1, n_col+1):
for i in range(1, m_row+1):
if y[j-1] == p[i-1]:
D[i, j] = D[i-1, j-1]
else:
D[i, j] = min(D[i-1, j] + 1,
D[i, j-1] + 1,
D[i-1, j-1] + 1)
if norm:
score = (1 - D[-1, -1]/max(m_row, n_col)) * 100
else:
score = D[-1, -1]
return score
def edit_score(recognized, ground_truth, norm=True, bg_class=["background"]):
P, _, _ = get_labels_start_end_time(recognized, bg_class)
Y, _, _ = get_labels_start_end_time(ground_truth, bg_class)
return levenstein(P, Y, norm)
def f_score(recognized, ground_truth, overlap, bg_class=["background"]):
p_label, p_start, p_end = get_labels_start_end_time(recognized, bg_class)
y_label, y_start, y_end = get_labels_start_end_time(ground_truth, bg_class)
tp = 0
fp = 0
hits = np.zeros(len(y_label))
for j in range(len(p_label)):
intersection = np.minimum(p_end[j], y_end) - np.maximum(p_start[j], y_start)
union = np.maximum(p_end[j], y_end) - np.minimum(p_start[j], y_start)
IoU = (1.0*intersection / union)*([p_label[j] == y_label[x] for x in range(len(y_label))])
# Get the best scoring segment
idx = np.array(IoU).argmax()
if IoU[idx] >= overlap and not hits[idx]:
tp += 1
hits[idx] = 1
else:
fp += 1
fn = len(y_label) - sum(hits)
return float(tp), float(fp), float(fn)
def accuracy(recog_content, gt_content):
correct = sum([1 for r, g in zip(recog_content, gt_content) if r == g])
total = len(recog_content)
return correct / total
def main(data_root, results_path, dataset, split):
ground_truth_path = os.path.join(data_root, dataset, "groundTruth")
recog_path = os.path.join(results_path, dataset, "split_"+split)
file_list = os.path.join(data_root, dataset, "splits/test.split"+split+".bundle")
list_of_videos = read_file(file_list).split('\n')[:-1]
overlap = [.1, .25, .5]
tp, fp, fn = np.zeros(3), np.zeros(3), np.zeros(3)
correct = 0
total = 0
edit = 0
for vid in list_of_videos:
gt_file = os.path.join(ground_truth_path, vid)
gt_content = read_file(gt_file).split('\n')[0:-1]
recog_file = os.path.join(recog_path, vid.split('.')[0])
recog_content = read_file(recog_file).split('\n')[1].split()
for i in range(len(gt_content)):
total += 1
if gt_content[i] == recog_content[i]:
correct += 1
edit += edit_score(recog_content, gt_content)
for s in range(len(overlap)):
tp1, fp1, fn1 = f_score(recog_content, gt_content, overlap[s])
tp[s] += tp1
fp[s] += fp1
fn[s] += fn1
print("Acc: %.4f" % (100*float(correct)/total))
print('Edit: %.4f' % ((1.0*edit)/len(list_of_videos)))
acc = (100*float(correct)/total)
edit = ((1.0*edit)/len(list_of_videos))
f1s = []
for s in range(len(overlap)):
precision = tp[s] / float(tp[s]+fp[s])
recall = tp[s] / float(tp[s]+fn[s])
f1 = 2.0 * (precision*recall) / (precision+recall)
f1 = np.nan_to_num(f1)*100
print('F1@%0.2f: %.4f' % (overlap[s], f1))
f1s.append(f1)
return acc, edit, f1s
def update_metrics(recognition, gt_cls, metrics):
metrics.update_acc(accuracy(recognition, gt_cls), len(recognition))
edit_score_cur = edit_score(recognition, gt_cls)
metrics.update_edit(edit_score_cur)
for s in range(len(metrics.overlap)):
tp1, fp1, fn1 = f_score(recognition, gt_cls, metrics.overlap[s])
metrics.update_f1s(tp1, fp1, fn1, s)
if __name__ == '__main__':
main()