-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_classifier.py
501 lines (440 loc) · 20.3 KB
/
run_classifier.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
# coding=utf-8
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Finetuning a 🤗 Transformers model for sequence classification on GLUE."""
import argparse
import logging
import math
import os
import random
from pathlib import Path
import numpy as np
import pandas as pd
import datasets
from datasets import load_dataset
from torch.utils.data import DataLoader
from tqdm.auto import tqdm
import transformers
from accelerate import Accelerator
from huggingface_hub import Repository
from transformers import (
AdamW,
AutoConfig,
AutoModelForSequenceClassification,
AutoTokenizer,
DataCollatorWithPadding,
PretrainedConfig,
SchedulerType,
default_data_collator,
get_scheduler,
set_seed,
)
from transformers.models.bert.modeling_bert import BertPreTrainedModel, BertModel
from transformers.modeling_outputs import SequenceClassifierOutput
from typing import Optional, Union, Tuple
from transformers.file_utils import get_full_repo_name
from transformers.utils.versions import require_version
from metrics_cls import VSEDMetric
import pdb
import torch
from torch.nn import Sigmoid
import torch.nn as nn
logger = logging.getLogger(__name__)
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/text-classification/requirements.txt")
accelerator = Accelerator()
device = accelerator.device
class BertCNNForSequenceClassification(BertPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.config = config
self.bert = BertModel(config)
classifier_dropout = (
config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
)
self.dropout = nn.Dropout(classifier_dropout)
filter_sizes = [1,2,3,4,5]
num_filters = 32
self.convs1 = nn.ModuleList([nn.Conv2d(4, num_filters, (K, config.hidden_size)) for K in filter_sizes])
self.fc1 = nn.Linear(len(filter_sizes)*num_filters, self.num_labels)
self.post_init()
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], SequenceClassifierOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.bert(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
x = outputs.hidden_states[-4:]
x = torch.stack(x, dim=1) # (N, 4, seq_len, hidden_size)
x = [nn.functional.relu(conv(x)).squeeze(3) for conv in self.convs1]
x = [nn.functional.max_pool1d(i, i.size(2)).squeeze(2) for i in x]
x = torch.cat(x, dim=1) # (N, 32*5)
x = self.dropout(x)
logits = self.fc1(x)
loss = None
if labels is not None:
if self.config.problem_type == "multi_label_classification":
loss_fct = nn.BCEWithLogitsLoss()
loss = loss_fct(logits, labels)
else:
raise ValueError()
if not return_dict:
output = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return SequenceClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
def parse_args():
parser = argparse.ArgumentParser(description="Finetune a transformers model on a text classification task")
parser.add_argument(
"--train_file", type=str, default=None, help="A csv or a json file containing the training data."
)
parser.add_argument(
"--validation_file", type=str, default=None, help="A csv or a json file containing the validation data."
)
parser.add_argument(
"--test_file", type=str, default=None,
)
parser.add_argument(
"--symptoms_file", type=str, default='data/symptoms.tsv',
)
parser.add_argument(
"--max_length",
type=int,
default=512,
help=(
"The maximum total input sequence length after tokenization. Sequences longer than this will be truncated,"
" sequences shorter will be padded if `--pad_to_max_lengh` is passed."
),
)
parser.add_argument(
"--pad_to_max_length",
action="store_true",
help="If passed, pad all samples to `max_length`. Otherwise, dynamic padding is used.",
)
parser.add_argument(
"--model_name_or_path",
type=str,
help="Path to pretrained model or model identifier from huggingface.co/models.",
required=True,
)
parser.add_argument(
"--use_slow_tokenizer",
action="store_true",
help="If passed, will use a slow tokenizer (not backed by the 🤗 Tokenizers library).",
)
parser.add_argument(
"--per_device_train_batch_size",
type=int,
default=32,
help="Batch size (per device) for the training dataloader.",
)
parser.add_argument(
"--per_device_eval_batch_size",
type=int,
default=8,
help="Batch size (per device) for the evaluation dataloader.",
)
parser.add_argument(
"--learning_rate",
type=float,
default=3e-5,
help="Initial learning rate (after the potential warmup period) to use.",
)
parser.add_argument("--weight_decay", type=float, default=0.0, help="Weight decay to use.")
parser.add_argument("--num_train_epochs", type=int, default=3, help="Total number of training epochs to perform.")
parser.add_argument(
"--max_train_steps",
type=int,
default=None,
help="Total number of training steps to perform. If provided, overrides num_train_epochs.",
)
parser.add_argument(
"--gradient_accumulation_steps",
type=int,
default=1,
help="Number of updates steps to accumulate before performing a backward/update pass.",
)
parser.add_argument(
"--lr_scheduler_type",
type=SchedulerType,
default="linear",
help="The scheduler type to use.",
choices=["linear", "cosine", "cosine_with_restarts", "polynomial", "constant", "constant_with_warmup"],
)
parser.add_argument(
"--num_warmup_steps", type=int, default=0, help="Number of steps for the warmup in the lr scheduler."
)
parser.add_argument("--output_dir", type=str, default=None, help="Where to store the final model.")
parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.")
parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.")
parser.add_argument(
"--hub_model_id", type=str, help="The name of the repository to keep in sync with the local `output_dir`."
)
parser.add_argument("--hub_token", type=str, help="The token to use to push to the Model Hub.")
parser.add_argument("--do_train", action="store_true", help="Wheter or not to train")
parser.add_argument("--do_predict", action="store_true", help="Wheter or not to test (inference)")
parser.add_argument("--fp16", action="store_true")
parser.add_argument("--local_rank", type=int, default=-1)
parser.add_argument("--threshold", type=float, default=0.1)
args = parser.parse_args()
return args
def predict(args, logger, processed_datasets, data_collator, model, metric, writer, accelerator, num_labels):
test_dataset = processed_datasets["test"]
test_dataloader = DataLoader(test_dataset, collate_fn=data_collator, batch_size=args.per_device_eval_batch_size)
progress_bar = tqdm(range(len(test_dataloader)), disable=not accelerator.is_local_main_process)
# Prepare everything with our `accelerator`.
model, test_dataloader = accelerator.prepare(model, test_dataloader)
model.eval()
for step, batch in enumerate(test_dataloader):
outputs = model(**batch)
predictions = (Sigmoid()(outputs.logits) > args.threshold).float() # multi_lable cls uses BCEWithLogitsLoss()
metric.add_batch(
predictions=accelerator.gather(predictions),
references=accelerator.gather(batch["labels"]),
)
progress_bar.update(1)
eval_metric = metric.compute()
logger.info(f"Predict result (th: {args.threshold}): {eval_metric}")
def train(args, logger, processed_datasets, data_collator, model, metric, writer):
train_dataset = processed_datasets["train"]
eval_dataset = processed_datasets["validation"]
# Log a few random samples from the training set:
for index in random.sample(range(len(train_dataset)), 3):
logger.info(f"Sample {index} of the training set: {train_dataset[index]}.")
train_dataloader = DataLoader(
train_dataset, shuffle=True, collate_fn=data_collator, batch_size=args.per_device_train_batch_size
)
eval_dataloader = DataLoader(eval_dataset, collate_fn=data_collator, batch_size=args.per_device_eval_batch_size)
# Optimizer
# Split weights in two groups, one with weight decay and the other not.
no_decay = ["bias", "LayerNorm.weight"]
optimizer_grouped_parameters = [
{
"params": [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)],
"weight_decay": args.weight_decay,
},
{
"params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)],
"weight_decay": 0.0,
},
]
optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate)
# Prepare everything with our `accelerator`.
model, optimizer, train_dataloader, eval_dataloader = accelerator.prepare(
model, optimizer, train_dataloader, eval_dataloader
)
# Note -> the training dataloader needs to be prepared before we grab his length below (cause its length will be
# shorter in multiprocess)
# Scheduler and math around the number of training steps.
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
if args.max_train_steps is None:
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
else:
args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)
lr_scheduler = get_scheduler(
name=args.lr_scheduler_type,
optimizer=optimizer,
num_warmup_steps=args.num_warmup_steps,
num_training_steps=args.max_train_steps,
)
# Train!
total_batch_size = args.per_device_train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps
logger.info("***** Running training *****")
logger.info(f" Num examples = {len(train_dataset)}")
logger.info(f" Num Epochs = {args.num_train_epochs}")
logger.info(f" Instantaneous batch size per device = {args.per_device_train_batch_size}")
logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}")
logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}")
logger.info(f" Total optimization steps = {args.max_train_steps}")
# Only show the progress bar once on each machine.
progress_bar = tqdm(range(args.max_train_steps), disable=not accelerator.is_local_main_process)
completed_steps = 0
gstep = 0
for epoch in range(args.num_train_epochs):
for step, batch in enumerate(train_dataloader):
model.train()
outputs = model(**batch)
loss = outputs.loss
loss = loss / args.gradient_accumulation_steps
accelerator.backward(loss)
gstep += 1
if step % args.gradient_accumulation_steps == 0 or step == len(train_dataloader) - 1:
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
progress_bar.update(1)
completed_steps += 1
if gstep % 40 == 0:
writer.add_scalar('Loss/train', loss.item(), gstep)
if completed_steps >= args.max_train_steps:
break
model.eval()
best_f1, best_th = 0, args.threshold
# get threshold on the dev set
for th in [0.05, 0.1, 0.15, 0.2, 0.25]:
for step, batch in enumerate(eval_dataloader):
outputs = model(**batch)
predictions = (Sigmoid()(outputs.logits) > th).float() # multi_lable cls uses BCEWithLogitsLoss()
metric.add_batch(
predictions=accelerator.gather(predictions),
references=accelerator.gather(batch["labels"]),
)
eval_metric = metric.compute()
logger.info(f"th: {th} | epoch {epoch+1}: {eval_metric}")
if (eval_metric["full"]['macro_f1'] + eval_metric["full"]['micro_f1'])/2 > best_f1:
best_f1 = (eval_metric["full"]['macro_f1'] + eval_metric["full"]['micro_f1'])/2
best_th = th
logger.info("The best (macro f1 + macro f1)/2 score: %.4f with threshold %.2f" % (best_f1, best_th))
# end of traning
if args.output_dir is not None:
accelerator.wait_for_everyone()
unwrapped_model = accelerator.unwrap_model(model)
unwrapped_model.save_pretrained(args.output_dir, save_function=accelerator.save)
if accelerator.is_main_process:
tokenizer.save_pretrained(args.output_dir)
if args.push_to_hub:
repo.push_to_hub(commit_message="End of training")
return model
if __name__ == "__main__":
args = parse_args()
# Make one log on every process with the configuration for debugging.
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO,
)
logger.info(accelerator.state)
# Setup logging, we only want one process per machine to log things on the screen.
# accelerator.is_local_main_process is only True for one process per machine.
logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR)
if accelerator.is_local_main_process:
datasets.utils.logging.set_verbosity_warning()
transformers.utils.logging.set_verbosity_info()
else:
datasets.utils.logging.set_verbosity_error()
transformers.utils.logging.set_verbosity_error()
# If passed along, set the training seed now.
if args.seed is not None:
set_seed(args.seed)
# Handle the repository creation
if accelerator.is_main_process:
if args.push_to_hub:
if args.hub_model_id is None:
repo_name = get_full_repo_name(Path(args.output_dir).name, token=args.hub_token)
else:
repo_name = args.hub_model_id
repo = Repository(args.output_dir, clone_from=repo_name)
elif args.output_dir is not None:
os.makedirs(args.output_dir, exist_ok=True)
accelerator.wait_for_everyone()
n_gpu = torch.cuda.device_count()
logger.info("device: {} n_gpu: {}, 16-bits training: {}".format(device, n_gpu, args.fp16))
# Labels: We need "label_list" and "num_labels":
label_list = []
with open(args.symptoms_file, "r") as f:
for i, line in enumerate(f.readlines()):
if i == 0:
continue
toks = line.split("\t")
label_list.append(toks[0])
num_labels = len(label_list)
# Load pretrained model and tokenizer
config = AutoConfig.from_pretrained(args.model_name_or_path, num_labels=num_labels, finetuning_task=args.task_name)
config.output_hidden_states = True
config.problem_type = "multi_label_classification"
tokenizer = AutoTokenizer.from_pretrained(args.model_name_or_path, use_fast=not args.use_slow_tokenizer)
#model = AutoModelForSequenceClassification.from_pretrained(
model = BertCNNForSequenceClassification.from_pretrained(
args.model_name_or_path,
from_tf=bool(".ckpt" in args.model_name_or_path),
config=config,
)
# Preprocessing the datasets
padding = "max_length" if args.pad_to_max_length else False
def preprocess_function(examples):
# Tokenize the texts
texts = (
(examples["symptom_text"],)
)
result = tokenizer(*texts, padding=padding, max_length=args.max_length, truncation=True)
#result["labels"] = [[0] * num_labels for l in examples["symptom_ids"]]
result["labels"] = [np.zeros(num_labels) for l in examples["symptom_ids"]]
for i, _labels in enumerate(examples["symptom_ids"]):
for l in _labels:
result["labels"][i][l] = 1 # label: symptom ids range: [0, # of symptoms-1]
return result # result: dict_keys(['input_ids', 'token_type_ids', 'attention_mask', 'labels'])
# Loading the dataset from local csv or json file.
data_files = {}
if args.do_train:
if args.train_file is not None:
data_files["train"] = args.train_file
if args.validation_file is not None:
data_files["validation"] = args.validation_file
extension = (args.train_file if args.train_file is not None else args.valid_file).split(".")[-1]
if args.do_predict:
if args.test_file is not None:
data_files["test"] = args.test_file
extension = args.test_file.split(".")[-1]
raw_datasets = load_dataset(extension, data_files=data_files)
with accelerator.main_process_first():
processed_datasets = raw_datasets.map(
preprocess_function,
batched=True,
remove_columns=(raw_datasets["train"].column_names if args.do_train else raw_datasets["test"].column_names),
desc="Running tokenizer on dataset",
keep_in_memory=True
)
# DataLoaders creation:
if args.pad_to_max_length:
# If padding was already done ot max length, we use the default data collator that will just convert everything
# to tensors.
data_collator = default_data_collator
else:
# Otherwise, `DataCollatorWithPadding` will apply dynamic padding for us (by padding to the maximum length of
# the samples passed). When using mixed precision, we add `pad_to_multiple_of=8` to pad all tensors to multiple
# of 8s, which will enable the use of Tensor Cores on NVIDIA hardware with compute capability >= 7.5 (Volta).
data_collator = DataCollatorWithPadding(tokenizer, pad_to_multiple_of=(8 if accelerator.use_fp16 else None))
metric = VSEDMetric()
if args.do_train:
train(args, logger, processed_datasets, data_collator, model, metric, writer)
if args.do_train and args.do_predict:
model = AutoModelForSequenceClassification.from_pretrained(
args.output_dir,
from_tf=bool(".ckpt" in args.model_name_or_path),
config=config,
)
predict(args, logger, processed_datasets, data_collator, model, metric, writer)
elif args.do_predict: # only inference
predict(args, logger, processed_datasets, data_collator, model, metric, writer, accelerator, num_labels)