-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathutil.py
91 lines (71 loc) · 2.92 KB
/
util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
from datetime import datetime
import os
import tensorflow as tf
import threading
import time
def run_directory(config):
def find_previous_run(dir):
if os.path.isdir(dir):
runs = [child[4:] for child in os.listdir(dir) if child[:4] == 'run_']
if runs:
return max([int(run) for run in runs])
return 0
if config.run_dir == 'latest':
parent_dir = 'runs/'
previous_run = find_previous_run(parent_dir)
run_dir = parent_dir + ('run_%d' % previous_run)
elif config.run_dir:
run_dir = config.run_dir
else:
parent_dir = 'runs/'
previous_run = find_previous_run(parent_dir)
run_dir = parent_dir + ('run_%d' % (previous_run + 1))
if run_dir[-1] != '/':
run_dir += '/'
if not os.path.isdir(run_dir):
os.makedirs(run_dir)
print('Checkpoint and summary directory is %s' % run_dir)
return run_dir
def turn_win(turn):
return turn * -2 + 1 # RED = +1, YELLOW = -1
def restore_or_initialize_scope(session, run_dir, scope):
variables = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope)
latest_checkpoint = tf.train.latest_checkpoint(run_dir,
scope + '_checkpoint')
if latest_checkpoint:
tf.train.Saver(variables).restore(session, latest_checkpoint)
print('Restored %s scope from %s' % (scope, latest_checkpoint))
else:
session.run(tf.variables_initializer(variables))
print('Initialized %s scope' % scope)
def save_scope(session, run_dir, scope):
os.makedirs(run_dir, exist_ok=True)
variables = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope)
tf.train.Saver(variables).save(
session,
os.path.join(run_dir, scope + '.ckpt'),
latest_filename=scope + '_checkpoint')
def restore_or_initialize_network(session, run_dir, network):
latest_checkpoint = tf.train.latest_checkpoint(run_dir,
network.scope + '_checkpoint')
if latest_checkpoint:
tf.train.Saver(network.variables).restore(session, latest_checkpoint)
print('Restored %s network from %s' % (network.scope, latest_checkpoint))
else:
session.run(tf.variables_initializer(network.variables))
print('Initialized %s network' % network.scope)
def restore_network_or_fail(session, run_dir, network):
latest_checkpoint = tf.train.latest_checkpoint(run_dir,
network.scope + '_checkpoint')
if latest_checkpoint:
tf.train.Saver(network.variables).restore(session, latest_checkpoint)
print('Restored %s network from %s' % (network.scope, latest_checkpoint))
else:
raise Exception('Network checkpoint %s not found in %s' %
(network.scope, run_dir))
def save_network(session, run_dir, network):
os.makedirs(run_dir, exist_ok=True)
tf.train.Saver(network.variables).save(
session,
os.path.join(run_dir, network.scope + '.ckpt'),
latest_filename=network.scope + '_checkpoint')