-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathemsimple.c
485 lines (410 loc) · 14.8 KB
/
emsimple.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
/* A simple implementation of using EM to estimate naive Bayes
parameters from labeled and unlabeled documents */
/* Copyright (C) 1997, 1998, 1999 Andrew McCallum
Written by: Kamal Nigam <knigam@cs.cmu.edu>
This file is part of the Bag-Of-Words Library, `libbow'.
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Library General Public License
as published by the Free Software Foundation, version 2.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Library General Public License for more details.
You should have received a copy of the GNU Library General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111, USA */
#include <bow/libbow.h>
#include <bow/nbsimple.h>
#include <math.h>
#include <argp/argp.h>
#include <stdlib.h>
/* This function is in rainbow.c */
extern void bow_print_log_odds_ratio (FILE *fp,
bow_barrel *barrel, int num_to_print);
enum {
EMSIMPLE_NUM_RUNS = 19000,
EMSIMPLE_PRINT_ACCURACY,
EMSIMPLE_NO_INIT
};
static int bow_emsimple_num_em_runs = 10;
static int (* emsimple_accuracy_docs)(bow_cdoc *) = NULL;
static int emsimple_no_init = 0;
static struct argp_option emsimple_options[] =
{
{0,0,0,0,
"EMSIMPLE options:", 90},
{"emsimple-num-iterations", EMSIMPLE_NUM_RUNS, "NUM", 0,
"Number of EM iterations to run when building model."},
{"emsimple-print-accuracy", EMSIMPLE_PRINT_ACCURACY, "TYPE", 0,
"When running emsimple, print the accuracy of documents at each EM round. "
"Type can be validation, train, or test."},
{"emsimple-no-init", EMSIMPLE_NO_INIT, 0, 0,
"Use this option when using emsimple as the secondary method for genem"},
{0, 0}
};
error_t
emsimple_parse_opt (int key, char *arg, struct argp_state *state)
{
switch (key)
{
case EMSIMPLE_NUM_RUNS:
bow_emsimple_num_em_runs = atoi(arg);
break;
case EMSIMPLE_PRINT_ACCURACY:
if (!strcmp (arg, "validation"))
emsimple_accuracy_docs = bow_cdoc_is_validation;
else if (!strcmp (arg, "train"))
emsimple_accuracy_docs = bow_cdoc_is_train;
else if (!strcmp (arg, "test"))
emsimple_accuracy_docs = bow_cdoc_is_test;
else
bow_error("Unknown document type for --emsimple-print-accuracy");
break;
case EMSIMPLE_NO_INIT:
emsimple_no_init = 1;
break;
default:
return ARGP_ERR_UNKNOWN;
}
return 0;
}
static const struct argp emsimple_argp =
{
emsimple_options,
emsimple_parse_opt
};
static struct argp_child emsimple_argp_child =
{
&emsimple_argp, /* This child's argp structure */
0, /* flags for child */
0, /* optional header in help message */
0 /* arbitrary group number for ordering */
};
/* End of command-line options specific to EMSIMPLE */
/* Calculate the accuracy of documents indicated by emsimple_accuracy_docs */
float
emsimple_calculate_accuracy (bow_barrel *doc_barrel, bow_barrel *class_barrel)
{
bow_dv_heap *test_heap; /* we'll extract test WV's from here */
bow_wv *query_wv;
int di; /* a document index */
bow_score *hits;
int actual_num_hits;
bow_cdoc *doc_cdoc;
int num_tested = 0;
int num_correct = 0;
/* Create the heap from which we'll get WV's. Initialize QUERY_WV so
BOW_TEST_NEXT_WV() knows not to try to free. */
hits = alloca (sizeof (bow_score));
test_heap = bow_test_new_heap (doc_barrel);
query_wv = NULL;
/* Loop once for each test document. Check to see if it was
correctly classified.*/
while ((di = bow_heap_next_wv (test_heap, doc_barrel, &query_wv,
emsimple_accuracy_docs))
!= -1)
{
doc_cdoc = bow_array_entry_at_index (doc_barrel->cdocs,
di);
bow_wv_set_weights (query_wv, class_barrel);
bow_wv_normalize_weights (query_wv, class_barrel);
actual_num_hits = bow_barrel_score (class_barrel, query_wv, hits, 1, -1);
assert (actual_num_hits == 1);
if (doc_cdoc->class == hits[0].di)
num_correct++;
num_tested++;
}
return (((float) num_correct) / ((float) num_tested));
}
/* Create a naive Bayes style class barrel using EM to estimate
parameters from labeled and unlabeled documents. */
bow_barrel *
bow_emsimple_new_vpc_with_weights (bow_barrel *doc_barrel)
{
bow_barrel *vpc_barrel; /* the vector-per-class barrel */
int wi; /* word index */
int max_wi; /* the number of words */
int dvi; /* document vector index */
int ci; /* class index */
bow_dv *dv; /* document vector */
int di; /* document index */
bow_dv_heap *test_heap=NULL; /* heap for extracting document word vectors */
bow_wv *query_wv; /* word vector */
bow_score *hits; /* classification scores */
int actual_num_hits; /* number of scores */
int hi; /* hit index */
bow_cdoc *doc_cdoc; /* a document barrel cdoc */
int num_tested; /* number of documents classified */
int em_runs = 0; /* number of rounds of EM performed so far */
int max_ci; /* the number of classes */
/* initialize some variables */
max_ci = bow_barrel_num_classes(doc_barrel);
max_wi = MIN (doc_barrel->wi2dvf->size, bow_num_words ());
/* set the cdoc->word_count to be the number of word occurrences in
each document. If any vocab selection has occurred, this is set
to an incorrect value. */
{
/* Create the heap from which we'll get word vectors. */
query_wv = NULL;
test_heap = bow_test_new_heap (doc_barrel);
/* Iterate over each document. */
while (-1 != (di = bow_heap_next_wv (test_heap, doc_barrel, &query_wv,
bow_cdoc_yes)))
{
int word_count = 0;
int wvi;
doc_cdoc = bow_array_entry_at_index (doc_barrel->cdocs,
di);
/* count the total number of word occurrences for this document */
for (wvi = 0; wvi < query_wv->num_entries; wvi++)
word_count += query_wv->entry[wvi].count;
/* set the document's word_count to the true value */
doc_cdoc->word_count = word_count;
}
}
if (!emsimple_no_init)
{
/* Initialize memory and values for each document cdoc->class_probs.
This holds the class membership for each labeled and unlabeled
document. For labeled documents, this is the true class
membership. For unlabeled documents, we initialize to zero, but
later estimate these memberships using EM. */
for (di=0; di < doc_barrel->cdocs->length; di++)
{
bow_cdoc *cdoc = bow_array_entry_at_index (doc_barrel->cdocs, di);
cdoc->class_probs = bow_malloc (sizeof (float) * max_ci);
/* initialize the class_probs to all zeros */
for (ci=0; ci < max_ci; ci++)
cdoc->class_probs[ci] = 0.0;
/* If document is a training document, set its class_probs to
match its class. This implicitly starts the EM search using
just the labeled data. */
if (cdoc->type == bow_doc_train)
cdoc->class_probs[cdoc->class] = 1.0;
}
}
/* Create an empty barrel; we fill it with vector-per-class
data and return it. */
{
vpc_barrel = bow_barrel_new (doc_barrel->wi2dvf->size,
doc_barrel->cdocs->length,
doc_barrel->cdocs->entry_size,
doc_barrel->cdocs->free_func);
vpc_barrel->method = doc_barrel->method;
vpc_barrel->classnames = bow_int4str_new (0);
/* setup the cdoc structure for the class barrel, except for the
word counts, which we'll do later. */
for (ci = 0; ci < max_ci; ci++)
{
bow_cdoc cdoc;
/* create the cdoc structure */
cdoc.type = bow_doc_train;
cdoc.normalizer = -0.0f; /* unused value*/
cdoc.word_count = 0; /* just a temporary value */
cdoc.prior = 0; /* just a temporary value */
cdoc.filename = strdup (bow_barrel_classname_at_index (doc_barrel,
ci));
if (!cdoc.filename)
bow_error ("Memory exhausted.");
bow_barrel_add_classname(vpc_barrel, cdoc.filename);
cdoc.class_probs = NULL;
cdoc.class = ci;
bow_array_append (vpc_barrel->cdocs, &cdoc);
}
}
/* let's do some EM */
while (em_runs < bow_emsimple_num_em_runs)
{
em_runs++;
/* The M-step. Build the wi2dvf of the class barrel by counting words */
bow_verbosify (bow_progress,
"Making class barrel by counting words: ");
/* get a new wi2dvf structure for our class barrel */
if (vpc_barrel->wi2dvf != NULL)
bow_wi2dvf_free(vpc_barrel->wi2dvf);
vpc_barrel->wi2dvf = bow_wi2dvf_new (doc_barrel->wi2dvf->size);
/* Add entries to the wi2dvf. Sum together the word weights for
individual labeled and unlabeled documents, multiplying by
their class membership. */
for (wi = 0; wi < max_wi; wi++)
{
dv = bow_wi2dvf_dv (doc_barrel->wi2dvf, wi);
/* skip words that do not occur in any documents */
if (!dv)
continue;
/* iterate over all documents that have an occurrence of word wi */
for (dvi = 0; dvi < dv->length; dvi++)
{
bow_cdoc *cdoc;
di = dv->entry[dvi].di;
cdoc = bow_array_entry_at_index (doc_barrel->cdocs, di);
/* skip documents that have no words */
if (cdoc->word_count == 0)
continue;
/* Use only labeled and unlabeled documents when
building our barrel's wi2dvf */
if (cdoc->type == bow_doc_train ||
cdoc->type == bow_doc_unlabeled)
{
/* add weights to all classes, based on the class
membership */
for (ci=0; ci < max_ci; ci++)
if (cdoc->class_probs[ci] > 0)
{
float addition = 0;
if (bow_event_model == bow_event_word)
addition = cdoc->class_probs[ci] *
(float) dv->entry[dvi].count;
else if (bow_event_model == bow_event_document_then_word)
addition = cdoc->class_probs[ci] *
(float) dv->entry[dvi].count *
(float) bow_event_document_then_word_document_length /
(float) cdoc->word_count;
else
bow_error("No implementation of this event model.");
/* add addition weight to the class-word pair */
bow_wi2dvf_add_wi_di_count_weight
(&(vpc_barrel->wi2dvf),
wi, ci,
1, /* dummy value */
addition);
}
}
}
if (wi % 100 == 0)
bow_verbosify (bow_progress, "\b\b\b\b\b\b%6d", max_wi - wi);
}
bow_verbosify (bow_progress, "\n");
/* bow_print_log_odds_ratio (stderr, vpc_barrel, 5); */
/* set the word_count of each class to the total number of word
occurrences per class */
bow_nbsimple_set_cdoc_word_count_from_wi2dvf_weights (vpc_barrel);
/* set priors */
if (doc_barrel->method->vpc_set_priors && !bow_uniform_class_priors)
(*doc_barrel->method->vpc_set_priors) (vpc_barrel, doc_barrel);
/* Calculate accuracy of the validation set*/
if (emsimple_accuracy_docs)
bow_verbosify (bow_progress, "Correct: %f\n",
emsimple_calculate_accuracy (doc_barrel, vpc_barrel));
/* We have a new vpc barrel to use. Let's now do the E-step,
and classify all our documents. */
/* Skip the E-step if on the last iteration of EM */
if (em_runs < bow_emsimple_num_em_runs)
{
/* Classify all the unlabeled documents to re-estimate their
class membership */
bow_verbosify(bow_progress, "\nClassifying unlabeled documents: ");
/* Initialize QUERY_WV so BOW_TEST_NEXT_WV() knows not to
try to free. Create the heap from which we'll get
WV's. */
query_wv = NULL;
hits = alloca (sizeof (bow_score) * max_ci);
num_tested = 0;
test_heap = bow_test_new_heap (doc_barrel);
/* Loop once for each unlabeled document. */
while ((di = bow_heap_next_wv (test_heap, doc_barrel, &query_wv,
bow_cdoc_is_unlabeled))
!= -1)
{
doc_cdoc = bow_array_entry_at_index (doc_barrel->cdocs,
di);
bow_wv_set_weights (query_wv, vpc_barrel);
bow_wv_normalize_weights (query_wv, vpc_barrel);
actual_num_hits =
bow_barrel_score (vpc_barrel,
query_wv, hits,
max_ci, -1);
assert (actual_num_hits == max_ci);
/* set the class probs to the naive bayes score */
for (hi = 0; hi < actual_num_hits; hi++)
doc_cdoc->class_probs[hits[hi].di] = hits[hi].weight;
if (num_tested % 100 == 0)
bow_verbosify (bow_progress, "\b\b\b\b\b\b%6d", num_tested);
num_tested++;
}
bow_verbosify(bow_progress, "\b\b\b\b\b\b%6d\n", num_tested);
}
}
return vpc_barrel;
}
/* Set the class prior probabilities by doing a weighted (by class
membership) count of the number of labeled and unlabeled documents in
each class. */
void
bow_emsimple_set_priors_using_class_probs (bow_barrel *vpc_barrel,
bow_barrel *doc_barrel)
{
float prior_sum = 0;
int ci;
int max_ci = vpc_barrel->cdocs->length;
int di;
/* Zero them. */
for (ci = 0; ci < max_ci; ci++)
{
bow_cdoc *cdoc;
cdoc = bow_array_entry_at_index (vpc_barrel->cdocs, ci);
cdoc->prior = 0;
}
/* Count each document for each class according to the
class_probs. */
for (di = 0; di < doc_barrel->cdocs->length; di++)
{
bow_cdoc *doc_cdoc = bow_array_entry_at_index (doc_barrel->cdocs, di);
bow_cdoc *vpc_cdoc;
if (doc_cdoc->type == bow_doc_train ||
doc_cdoc->type == bow_doc_unlabeled)
{
for (ci = 0; ci < max_ci; ci++)
{
vpc_cdoc = bow_array_entry_at_index (vpc_barrel->cdocs, ci);
vpc_cdoc->prior += doc_cdoc->class_probs[ci];
}
}
}
/* Sum them all. */
for (ci = 0; ci < max_ci; ci++)
{
bow_cdoc *cdoc;
cdoc = bow_array_entry_at_index (vpc_barrel->cdocs, ci);
prior_sum += cdoc->prior;
}
/* Normalize to set the prior. */
for (ci = 0; ci < max_ci; ci++)
{
bow_cdoc *cdoc;
cdoc = bow_array_entry_at_index (vpc_barrel->cdocs, ci);
cdoc->prior /= prior_sum;
if (cdoc->prior == 0)
bow_verbosify (bow_progress,
"WARNING: class `%s' has zero prior\n",
cdoc->filename);
assert (cdoc->prior >= 0.0 && cdoc->prior <= 1.0);
}
}
rainbow_method bow_method_emsimple =
{
"emsimple",
NULL, /* no weight setting function */
NULL, /* no weight scaling function */
NULL, /* no weight normalizing function, */
bow_emsimple_new_vpc_with_weights,
bow_emsimple_set_priors_using_class_probs,
bow_nbsimple_score,
bow_wv_set_weights_to_count,
NULL, /* no word vector weight normalization */
bow_barrel_free,
NULL /* no parameters */
};
void _register_method_emsimple () __attribute__ ((constructor));
void _register_method_emsimple ()
{
static int done = 0;
if (done)
return;
bow_method_register_with_name ((bow_method*)&bow_method_emsimple,
"emsimple",
sizeof (rainbow_method),
&emsimple_argp_child);
bow_argp_add_child (&emsimple_argp_child);
done = 1;
}