-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpreprocess_mfcc.py
72 lines (56 loc) · 2.46 KB
/
preprocess_mfcc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
'''
credits to
Valerio Velardo
Github: musikalkemist
'''
import os
import librosa
import math
import json
DATASET_PATH = "Data_Cropped"
JSON_PATH = "training_data.json"
SAMPLE_RATE = 22050
DURATION = 30 # unit is seconds
SAMPLES_PER_TRACK = SAMPLE_RATE * DURATION
def save_mfcc(dataset_path, json_path, n_mfcc=13, n_fft=2048, hop_length=512, num_segments=5):
data={
"mapping": [],
"mfcc": [],
"labels": []
}
num_samples_per_segment = int(SAMPLES_PER_TRACK / num_segments)
expected_num_mfcc_vectors_per_segment = math.ceil(num_samples_per_segment / hop_length) # 1.2 -> 2
# loop through all the genres
for bptracker, (dirpath, dirnames, filenames) in enumerate(os.walk(dataset_path)):
# check that we're not at the root level
if dirpath is not dataset_path:
dirpath_components = dirpath.split("/")
semantic_label = dirpath_components[-1]
data["mapping"].append(semantic_label)
print("\nProcessing: {}".format(semantic_label))
# process files for a specific genre
for f in filenames:
# load audio file
file_path = os.path.join(dirpath, f)
signal, sr = librosa.load(file_path, sr=SAMPLE_RATE)
# process and store segment data (MFCC)
for s in range(num_segments):
try:
start_sample = num_samples_per_segment * s # s=0 -> 0
finish_sample = start_sample + num_samples_per_segment # s=0 -> num_samples_per_segment
try:
mfcc = librosa.feature.mfcc(signal[start_sample: finish_sample],sr=SAMPLE_RATE, n_fft=n_fft, n_mfcc=n_mfcc, hop_length=hop_length)
mfcc = mfcc.T
except:
pass
# store mfcc for segment if it has the expected length
if len(mfcc) == expected_num_mfcc_vectors_per_segment:
data["mfcc"].append(mfcc.tolist())
data["labels"].append(bptracker - 1)
print("{}, segment:{}".format(file_path, s+1))
except:
pass
with open(JSON_PATH, "w") as fp:
json.dump(data, fp, indent=4)
if __name__ == "__main__":
save_mfcc(DATASET_PATH, JSON_PATH, num_segments=10)