-
Notifications
You must be signed in to change notification settings - Fork 61
/
Copy pathDESCRIPTION
48 lines (48 loc) · 1.85 KB
/
DESCRIPTION
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
Package: anomalize
Type: Package
Title: Tidy Anomaly Detection
Version: 0.3.0.9000
Authors@R: c(
person("Matt", "Dancho", email = "mdancho@business-science.io", role = c("aut", "cre")),
person("Davis", "Vaughan", email = "dvaughan@business-science.io", role = c("aut"))
)
Description:
The 'anomalize' package enables a "tidy" workflow for detecting anomalies in data.
The main functions are time_decompose(), anomalize(), and time_recompose().
When combined, it's quite simple to decompose time series, detect anomalies,
and create bands separating the "normal" data from the anomalous data at scale (i.e. for multiple time series).
Time series decomposition is used to remove trend and seasonal components via the time_decompose() function
and methods include seasonal decomposition of time series by Loess ("stl") and
seasonal decomposition by piecewise medians ("twitter"). The anomalize() function implements
two methods for anomaly detection of residuals including using an inner quartile range ("iqr")
and generalized extreme studentized deviation ("gesd"). These methods are based on
those used in the 'forecast' package and the Twitter 'AnomalyDetection' package.
Refer to the associated functions for specific references for these methods.
URL: https://business-science.github.io/anomalize/, https://github.com/business-science/anomalize
BugReports: https://github.com/business-science/anomalize/issues
License: GPL (>= 3)
Encoding: UTF-8
LazyData: true
Depends:
R (>= 3.0.0)
Imports:
dplyr,
glue,
timetk,
sweep,
tibbletime (>= 0.1.5),
purrr,
rlang,
tibble,
tidyr (>= 1.0.0),
ggplot2 (>= 3.4.0)
RoxygenNote: 7.2.3
Roxygen: list(markdown = TRUE)
Suggests:
tidyquant,
stringr,
testthat (>= 3.0.0),
knitr,
rmarkdown
VignetteBuilder: knitr
Config/testthat/edition: 3