forked from BachiLi/diffvg
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsample_boundary.h
454 lines (445 loc) · 16.9 KB
/
sample_boundary.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
#pragma once
#include "diffvg.h"
#include "shape.h"
#include "scene.h"
#include "vector.h"
#include "cdf.h"
struct PathBoundaryData {
int base_point_id;
int point_id;
float t;
};
struct BoundaryData {
PathBoundaryData path;
bool is_stroke;
};
DEVICE
Vector2f sample_boundary(const Circle &circle,
float t,
Vector2f &normal,
float &pdf,
BoundaryData &,
float stroke_perturb_direction,
float stroke_radius) {
// Parametric form of a circle (t in [0, 1)):
// x = center.x + r * cos(2pi * t)
// y = center.y + r * sin(2pi * t)
auto offset = Vector2f{
circle.radius * cos(2 * float(M_PI) * t),
circle.radius * sin(2 * float(M_PI) * t)
};
normal = normalize(offset);
pdf /= (2 * float(M_PI) * circle.radius);
auto ret = circle.center + offset;
if (stroke_perturb_direction != 0.f) {
ret += stroke_perturb_direction * stroke_radius * normal;
if (stroke_perturb_direction < 0) {
// normal should point towards the perturb direction
normal = -normal;
}
}
return ret;
}
DEVICE
Vector2f sample_boundary(const Ellipse &ellipse,
float t,
Vector2f &normal,
float &pdf,
BoundaryData &,
float stroke_perturb_direction,
float stroke_radius) {
// Parametric form of a ellipse (t in [0, 1)):
// x = center.x + r.x * cos(2pi * t)
// y = center.y + r.y * sin(2pi * t)
const auto &r = ellipse.radius;
auto offset = Vector2f{
r.x * cos(2 * float(M_PI) * t),
r.y * sin(2 * float(M_PI) * t)
};
auto dxdt = -r.x * sin(2 * float(M_PI) * t) * 2 * float(M_PI);
auto dydt = r.y * cos(2 * float(M_PI) * t) * 2 * float(M_PI);
// tangent is normalize(dxdt, dydt)
normal = normalize(Vector2f{dydt, -dxdt});
pdf /= sqrt(square(dxdt) + square(dydt));
auto ret = ellipse.center + offset;
if (stroke_perturb_direction != 0.f) {
ret += stroke_perturb_direction * stroke_radius * normal;
if (stroke_perturb_direction < 0) {
// normal should point towards the perturb direction
normal = -normal;
}
}
return ret;
}
DEVICE
Vector2f sample_boundary(const Path &path,
const float *path_length_cdf,
const float *path_length_pmf,
const int *point_id_map,
float path_length,
float t,
Vector2f &normal,
float &pdf,
BoundaryData &data,
float stroke_perturb_direction,
float stroke_radius) {
if (stroke_perturb_direction != 0.f && !path.is_closed) {
// We need to samples the "caps" of the path
// length of a cap is pi * abs(stroke_perturb_direction)
// there are two caps
auto cap_length = 0.f;
if (path.thickness != nullptr) {
auto r0 = path.thickness[0];
auto r1 = path.thickness[path.num_points - 1];
cap_length = float(M_PI) * (r0 + r1);
} else {
cap_length = 2 * float(M_PI) * stroke_radius;
}
auto cap_prob = cap_length / (cap_length + path_length);
if (t < cap_prob) {
t = t / cap_prob;
pdf *= cap_prob;
auto r0 = stroke_radius;
auto r1 = stroke_radius;
if (path.thickness != nullptr) {
r0 = path.thickness[0];
r1 = path.thickness[path.num_points - 1];
}
// HACK: in theory we want to compute the tangent and
// sample the hemi-circle, but here we just sample the
// full circle since it's less typing
if (stroke_perturb_direction < 0) {
// Sample the cap at the beginning
auto p0 = Vector2f{path.points[0], path.points[1]};
auto offset = Vector2f{
r0 * cos(2 * float(M_PI) * t),
r0 * sin(2 * float(M_PI) * t)
};
normal = normalize(offset);
pdf /= (2 * float(M_PI) * r0);
data.path.base_point_id = 0;
data.path.point_id = 0;
data.path.t = 0;
return p0 + offset;
} else {
// Sample the cap at the end
auto p0 = Vector2f{path.points[2 * (path.num_points - 1)],
path.points[2 * (path.num_points - 1) + 1]};
auto offset = Vector2f{
r1 * cos(2 * float(M_PI) * t),
r1 * sin(2 * float(M_PI) * t)
};
normal = normalize(offset);
pdf /= (2 * float(M_PI) * r1);
data.path.base_point_id = path.num_base_points - 1;
data.path.point_id = path.num_points - 2 -
path.num_control_points[data.path.base_point_id];
data.path.t = 1;
return p0 + offset;
}
} else {
t = (t - cap_prob) / (1 - cap_prob);
pdf *= (1 - cap_prob);
}
}
// Binary search on path_length_cdf
auto sample_id = sample(path_length_cdf,
path.num_base_points,
t,
&t);
assert(sample_id >= 0 && sample_id < path.num_base_points);
auto point_id = point_id_map[sample_id];
if (path.num_control_points[sample_id] == 0) {
// Straight line
auto i0 = point_id;
auto i1 = (i0 + 1) % path.num_points;
assert(i0 < path.num_points);
auto p0 = Vector2f{path.points[2 * i0], path.points[2 * i0 + 1]};
auto p1 = Vector2f{path.points[2 * i1], path.points[2 * i1 + 1]};
data.path.base_point_id = sample_id;
data.path.point_id = point_id;
data.path.t = t;
if (t < -1e-3f || t > 1+1e-3f) {
// return invalid sample
pdf = 0;
return Vector2f{0, 0};
}
auto tangent = (p1 - p0);
auto tan_len = length(tangent);
if (tan_len == 0) {
// return invalid sample
pdf = 0;
return Vector2f{0, 0};
}
normal = Vector2f{-tangent.y, tangent.x} / tan_len;
// length of tangent is the Jacobian of the sampling transformation
pdf *= path_length_pmf[sample_id] / tan_len;
auto ret = p0 + t * (p1 - p0);
if (stroke_perturb_direction != 0.f) {
auto r0 = stroke_radius;
auto r1 = stroke_radius;
if (path.thickness != nullptr) {
r0 = path.thickness[i0];
r1 = path.thickness[i1];
}
auto r = r0 + t * (r1 - r0);
ret += stroke_perturb_direction * r * normal;
if (stroke_perturb_direction < 0) {
// normal should point towards the perturb direction
normal = -normal;
}
}
return ret;
} else if (path.num_control_points[sample_id] == 1) {
// Quadratic Bezier curve
auto i0 = point_id;
auto i1 = i0 + 1;
auto i2 = (i0 + 2) % path.num_points;
auto p0 = Vector2f{path.points[2 * i0], path.points[2 * i0 + 1]};
auto p1 = Vector2f{path.points[2 * i1], path.points[2 * i1 + 1]};
auto p2 = Vector2f{path.points[2 * i2], path.points[2 * i2 + 1]};
auto eval = [&](float t) -> Vector2f {
auto tt = 1 - t;
return (tt*tt)*p0 + (2*tt*t)*p1 + (t*t)*p2;
};
data.path.base_point_id = sample_id;
data.path.point_id = point_id;
data.path.t = t;
if (t < -1e-3f || t > 1+1e-3f) {
// return invalid sample
pdf = 0;
return Vector2f{0, 0};
}
auto tangent = 2 * (1 - t) * (p1 - p0) + 2 * t * (p2 - p1);
auto tan_len = length(tangent);
if (tan_len == 0) {
// return invalid sample
pdf = 0;
return Vector2f{0, 0};
}
normal = Vector2f{-tangent.y, tangent.x} / tan_len;
// length of tangent is the Jacobian of the sampling transformation
pdf *= path_length_pmf[sample_id] / tan_len;
auto ret = eval(t);
if (stroke_perturb_direction != 0.f) {
auto r0 = stroke_radius;
auto r1 = stroke_radius;
auto r2 = stroke_radius;
if (path.thickness != nullptr) {
r0 = path.thickness[i0];
r1 = path.thickness[i1];
r2 = path.thickness[i2];
}
auto tt = 1 - t;
auto r = (tt*tt)*r0 + (2*tt*t)*r1 + (t*t)*r2;
ret += stroke_perturb_direction * r * normal;
if (stroke_perturb_direction < 0) {
// normal should point towards the perturb direction
normal = -normal;
}
}
return ret;
} else if (path.num_control_points[sample_id] == 2) {
// Cubic Bezier curve
auto i0 = point_id;
auto i1 = point_id + 1;
auto i2 = point_id + 2;
auto i3 = (point_id + 3) % path.num_points;
assert(i0 >= 0 && i2 < path.num_points);
auto p0 = Vector2f{path.points[2 * i0], path.points[2 * i0 + 1]};
auto p1 = Vector2f{path.points[2 * i1], path.points[2 * i1 + 1]};
auto p2 = Vector2f{path.points[2 * i2], path.points[2 * i2 + 1]};
auto p3 = Vector2f{path.points[2 * i3], path.points[2 * i3 + 1]};
auto eval = [&](float t) -> Vector2f {
auto tt = 1 - t;
return (tt*tt*tt)*p0 + (3*tt*tt*t)*p1 + (3*tt*t*t)*p2 + (t*t*t)*p3;
};
data.path.base_point_id = sample_id;
data.path.point_id = point_id;
data.path.t = t;
if (t < -1e-3f || t > 1+1e-3f) {
// return invalid sample
pdf = 0;
return Vector2f{0, 0};
}
auto tangent = 3 * square(1 - t) * (p1 - p0) + 6 * (1 - t) * t * (p2 - p1) + 3 * t * t * (p3 - p2);
auto tan_len = length(tangent);
if (tan_len == 0) {
// return invalid sample
pdf = 0;
return Vector2f{0, 0};
}
normal = Vector2f{-tangent.y, tangent.x} / tan_len;
// length of tangent is the Jacobian of the sampling transformation
pdf *= path_length_pmf[sample_id] / tan_len;
auto ret = eval(t);
if (stroke_perturb_direction != 0.f) {
auto r0 = stroke_radius;
auto r1 = stroke_radius;
auto r2 = stroke_radius;
auto r3 = stroke_radius;
if (path.thickness != nullptr) {
r0 = path.thickness[i0];
r1 = path.thickness[i1];
r2 = path.thickness[i2];
r3 = path.thickness[i3];
}
auto tt = 1 - t;
auto r = (tt*tt*tt)*r0 + (3*tt*tt*t)*r1 + (3*tt*t*t)*r2 + (t*t*t)*r3;
ret += stroke_perturb_direction * r * normal;
if (stroke_perturb_direction < 0) {
// normal should point towards the perturb direction
normal = -normal;
}
}
return ret;
} else {
assert(false);
}
assert(false);
return Vector2f{0, 0};
}
DEVICE
Vector2f sample_boundary(const Rect &rect,
float t, Vector2f &normal,
float &pdf,
BoundaryData &,
float stroke_perturb_direction,
float stroke_radius) {
// Roll a dice to decide whether to sample width or height
auto w = rect.p_max.x - rect.p_min.x;
auto h = rect.p_max.y - rect.p_min.y;
pdf /= (2 * (w +h));
if (t <= w / (w + h)) {
// Sample width
// reuse t for the next dice
t *= (w + h) / w;
// Roll a dice to decide whether to sample upper width or lower width
if (t < 0.5f) {
// Sample upper width
normal = Vector2f{0, -1};
auto ret = rect.p_min + 2 * t * Vector2f{rect.p_max.x - rect.p_min.x, 0.f};
if (stroke_perturb_direction != 0.f) {
ret += stroke_perturb_direction * stroke_radius * normal;
if (stroke_perturb_direction < 0) {
// normal should point towards the perturb direction
normal = -normal;
}
}
return ret;
} else {
// Sample lower width
normal = Vector2f{0, 1};
auto ret = Vector2f{rect.p_min.x, rect.p_max.y} +
2 * (t - 0.5f) * Vector2f{rect.p_max.x - rect.p_min.x, 0.f};
if (stroke_perturb_direction != 0.f) {
ret += stroke_perturb_direction * stroke_radius * normal;
if (stroke_perturb_direction < 0) {
// normal should point towards the perturb direction
normal = -normal;
}
}
return ret;
}
} else {
// Sample height
// reuse t for the next dice
assert(h > 0);
t = (t - w / (w + h)) * (w + h) / h;
// Roll a dice to decide whether to sample left height or right height
if (t < 0.5f) {
// Sample left height
normal = Vector2f{-1, 0};
auto ret = rect.p_min + 2 * t * Vector2f{0.f, rect.p_max.y - rect.p_min.y};
if (stroke_perturb_direction != 0.f) {
ret += stroke_perturb_direction * stroke_radius * normal;
if (stroke_perturb_direction < 0) {
// normal should point towards the perturb direction
normal = -normal;
}
}
return ret;
} else {
// Sample right height
normal = Vector2f{1, 0};
auto ret = Vector2f{rect.p_max.x, rect.p_min.y} +
2 * (t - 0.5f) * Vector2f{0.f, rect.p_max.y - rect.p_min.y};
if (stroke_perturb_direction != 0.f) {
ret += stroke_perturb_direction * stroke_radius * normal;
if (stroke_perturb_direction < 0) {
// normal should point towards the perturb direction
normal = -normal;
}
}
return ret;
}
}
}
DEVICE
Vector2f sample_boundary(const SceneData &scene,
int shape_group_id,
int shape_id,
float t,
Vector2f &normal,
float &pdf,
BoundaryData &data) {
const ShapeGroup &shape_group = scene.shape_groups[shape_group_id];
const Shape &shape = scene.shapes[shape_id];
pdf = 1;
// Choose which one to sample: stroke discontinuities or fill discontinuities.
// TODO: we don't need to sample fill discontinuities when stroke alpha is 1 and both
// fill and stroke color exists
auto stroke_perturb = false;
if (shape_group.fill_color != nullptr && shape_group.stroke_color != nullptr) {
if (t < 0.5f) {
stroke_perturb = false;
t = 2 * t;
pdf = 0.5f;
} else {
stroke_perturb = true;
t = 2 * (t - 0.5f);
pdf = 0.5f;
}
} else if (shape_group.stroke_color != nullptr) {
stroke_perturb = true;
}
data.is_stroke = stroke_perturb;
auto stroke_perturb_direction = 0.f;
if (stroke_perturb) {
if (t < 0.5f) {
stroke_perturb_direction = -1.f;
t = 2 * t;
pdf *= 0.5f;
} else {
stroke_perturb_direction = 1.f;
t = 2 * (t - 0.5f);
pdf *= 0.5f;
}
}
switch (shape.type) {
case ShapeType::Circle:
return sample_boundary(
*(const Circle *)shape.ptr, t, normal, pdf, data, stroke_perturb_direction, shape.stroke_width);
case ShapeType::Ellipse:
return sample_boundary(
*(const Ellipse *)shape.ptr, t, normal, pdf, data, stroke_perturb_direction, shape.stroke_width);
case ShapeType::Path:
return sample_boundary(
*(const Path *)shape.ptr,
scene.path_length_cdf[shape_id],
scene.path_length_pmf[shape_id],
scene.path_point_id_map[shape_id],
scene.shapes_length[shape_id],
t,
normal,
pdf,
data,
stroke_perturb_direction,
shape.stroke_width);
case ShapeType::Rect:
return sample_boundary(
*(const Rect *)shape.ptr, t, normal, pdf, data, stroke_perturb_direction, shape.stroke_width);
}
assert(false);
return Vector2f{};
}