-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvalidate_kd_2.py
457 lines (421 loc) · 27.5 KB
/
validate_kd_2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
from tqdm import tqdm
import argparse
import os, sys
import json
import pickle
from termcolor import colored
from DataLoader import VideoQADataLoader
from utils import *
import model.models as modelset
import model.models_1 as modelset_1
import model.models_2 as modelset_2
from config import cfg, cfg_from_file
QUESTION_CATEGORY = {0:'count',1:'exist',2:'query_color',3:'query_size',4:'query_actiontype',5:'query_direction',
6:'query_shape',7:'compare_more',8:'compare_equal',9:'compare_less',10:'attribute_compare_color',
11:'attribute_compare_size',12:'attribute_compare_actiontype',13:'attribute_compare_direction',
14:'attribute_compare_shape'}
def validate(cfg, teacher_model, model, data, device, write_preds=False):
model.eval()
soft_criterion = nn.KLDivLoss(reduction='batchmean').to(device)
hard_criterion = nn.CrossEntropyLoss().to(device)
print('validating...')
total_acc, count = 0.0, 0
#
total_loss, total_app_loss, total_mo_loss, total_hard_loss = 0.0, 0.0, 0.0, 0.0
all_preds = []
gts = []
v_ids = []
q_ids = []
if cfg.dataset.name == 'msvd-qa' or cfg.dataset.name == 'msrvtt-qa':
what_acc,who_acc,how_acc,when_acc,where_acc = 0.,0.,0.,0.,0.
what_count, who_count, how_count, when_count, where_count = 0,0,0,0,0
elif cfg.dataset.name == 'svqa':
count_acc, exist_acc, query_color_acc, query_size_acc, query_actiontype_acc, \
query_direction_acc, query_shape_acc, compare_more_acc, compare_equal_acc, compare_less_acc, \
attribute_compare_color_acc, attribute_compare_size_acc, attribute_compare_actiontype_acc, \
attribute_compare_direction_acc, attribute_compare_shape_acc = 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.
count_ct, exist_ct, query_color_ct, query_size_ct, query_actiontype_ct, query_direction_ct, \
query_shape_ct, compare_more_ct, compare_equal_ct, compare_less_ct, attribute_compare_color_ct, \
attribute_compare_size_ct, attribute_compare_actiontype_ct, attribute_compare_direction_ct, \
attribute_compare_shape_ct = 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
with torch.no_grad():
for batch in tqdm(data, total=len(data)):
if cfg.dataset.name == 'svqa':
video_ids, question_ids, question_categories, answers, *batch_input = [todevice(x, device) for x in batch]
else:
video_ids, question_ids, answers, *batch_input = [todevice(x, device) for x in batch]
if cfg.train.batch_size == 1:
answers = answers.to(device)
else:
answers = answers.to(device).squeeze()
if cfg.model_type == 'DualVGR':
appearance_video_feat, motion_video_feat, logits, aq_embed, mq_embed, com_app, com_motion, aq_fusion, mq_fusion = model(*batch_input) #attn,appear_scores,mot_scores,
else:
logits = model(*batch_input)
# teacher get soft target
with torch.no_grad():
if cfg.model_type == 'DualVGR':
teacher_logits, _, _, _, _, _, _, _ = teacher_model(*batch_input) #attn,appear_scores,mot_scores,
else:
teacher_logits = teacher_model(*batch_input)
# loss caculate
loss = hard_criterion(logits, answers)
if cfg.model_type == 'DualVGR':
loss_dep = 0
loss_com = 0
temp = len(aq_fusion)
for i in range(temp):
loss_dep += (loss_dependence(aq_fusion[i].cuda(),
com_app[i].cuda(),
cfg.train.num_of_nodes) + loss_dependence(mq_fusion[i].cuda(),
com_motion[i].cuda(),
cfg.train.num_of_nodes))
loss_com += common_loss(com_app[i].cuda(), com_motion[i].cuda())
hard_loss = loss + cfg.alpha * loss_com / temp + cfg.beta * loss_dep / temp
app_loss = soft_criterion(
F.log_softmax(appearance_video_feat / cfg.t_app, dim=2),
F.softmax(teacher_logits / cfg.t_app, dim=2)
)
mo_loss = soft_criterion(
F.log_softmax(motion_video_feat / cfg.t_mo, dim=2),
F.softmax(teacher_logits / cfg.t_mo, dim=2)
)
loss = hard_loss + cfg.kd_alpha*app_loss +cfg.kd_beta*mo_loss # TODO
# loss = cfg.kd_alpha * loss
total_loss += loss.detach().cpu()
total_app_loss += app_loss.detach().cpu()
total_mo_loss += mo_loss.detach().cpu()
total_hard_loss += hard_loss.detach().cpu()
avg_loss = total_loss / (i + 1)
avg_app_loss = total_app_loss / (i + 1)
avg_mo_loss = total_mo_loss / (i + 1)
avg_hard_loss = total_hard_loss / (i + 1)
preds = logits.detach().argmax(1)
agreeings = (preds == answers)
if cfg.dataset.name == 'msvd-qa' or cfg.dataset.name == 'msrvtt-qa':
what_idx = []
who_idx = []
how_idx = []
when_idx = []
where_idx = []
key_word = batch_input[-2][:,0].to('cpu') # batch-based questions word
for i,word in enumerate(key_word):
word = int(word)
if data.vocab['question_idx_to_token'][word] == 'what':
what_idx.append(i)
elif data.vocab['question_idx_to_token'][word] == 'who':
who_idx.append(i)
elif data.vocab['question_idx_to_token'][word] == 'how':
how_idx.append(i)
elif data.vocab['question_idx_to_token'][word] == 'when':
when_idx.append(i)
elif data.vocab['question_idx_to_token'][word] == 'where':
where_idx.append(i)
else:
count_idx = []
exist_idx = []
query_color_idx = []
query_size_idx = []
query_actiontype_idx = []
query_direction_idx = []
query_shape_idx = []
compare_more_idx = []
compare_equal_idx = []
compare_less_idx = []
attribute_compare_color_idx = []
attribute_compare_size_idx = []
attribute_compare_actiontype_idx = []
attribute_compare_direction_idx = []
attribute_compare_shape_idx = []
for i, category in enumerate(question_categories):
category = int(category.cpu())
if QUESTION_CATEGORY[category] == 'count':
count_idx.append(i)
elif QUESTION_CATEGORY[category] == 'exist':
exist_idx.append(i)
elif QUESTION_CATEGORY[category] == 'query_color':
query_color_idx.append(i)
elif QUESTION_CATEGORY[category] == 'query_size':
query_size_idx.append(i)
elif QUESTION_CATEGORY[category] == 'query_actiontype':
query_actiontype_idx.append(i)
elif QUESTION_CATEGORY[category] == 'query_direction':
query_direction_idx.append(i)
elif QUESTION_CATEGORY[category] == 'query_shape':
query_shape_idx.append(i)
elif QUESTION_CATEGORY[category] == 'compare_more':
compare_more_idx.append(i)
elif QUESTION_CATEGORY[category] == 'compare_equal':
compare_equal_idx.append(i)
elif QUESTION_CATEGORY[category] == 'compare_less':
compare_less_idx.append(i)
elif QUESTION_CATEGORY[category] == 'attribute_compare_color':
attribute_compare_color_idx.append(i)
elif QUESTION_CATEGORY[category] == 'attribute_compare_size':
attribute_compare_size_idx.append(i)
elif QUESTION_CATEGORY[category] == 'attribute_compare_actiontype':
attribute_compare_actiontype_idx.append(i)
elif QUESTION_CATEGORY[category] == 'attribute_compare_direction':
attribute_compare_direction_idx.append(i)
elif QUESTION_CATEGORY[category] == 'attribute_compare_shape':
attribute_compare_shape_idx.append(i)
else:
raise ValueError('unseen value in question categories?')
if write_preds:
preds = logits.argmax(1)
answer_vocab = data.vocab['answer_idx_to_token']
for predict in preds:
all_preds.append(answer_vocab[predict.item()])
for gt in answers:
gts.append(answer_vocab[gt.item()])
for id in video_ids:
v_ids.append(id.cpu().numpy())
for ques_id in question_ids:
q_ids.append(ques_id.cpu().numpy())
if cfg.dataset.name == 'msvd-qa' or cfg.dataset.name == 'msrvtt-qa':
total_acc += agreeings.float().sum().item()
count += answers.size(0)
what_acc += agreeings.float()[what_idx].sum().item() if what_idx != [] else 0
who_acc += agreeings.float()[who_idx].sum().item() if who_idx != [] else 0
how_acc += agreeings.float()[how_idx].sum().item() if how_idx != [] else 0
when_acc += agreeings.float()[when_idx].sum().item() if when_idx != [] else 0
where_acc += agreeings.float()[where_idx].sum().item() if where_idx != [] else 0
what_count += len(what_idx)
who_count += len(who_idx)
how_count += len(how_idx)
when_count += len(when_idx)
where_count += len(where_idx)
else:
total_acc += agreeings.float().sum().item()
count += answers.size(0)
count_acc += agreeings.float()[count_idx].sum().item() if count_idx != [] else 0
exist_acc += agreeings.float()[exist_idx].sum().item() if exist_idx != [] else 0
query_color_acc += agreeings.float()[query_color_idx].sum().item() if query_color_idx != [] else 0
query_size_acc += agreeings.float()[query_size_idx].sum().item() if query_size_idx != [] else 0
query_actiontype_acc += agreeings.float()[query_actiontype_idx].sum().item() if query_actiontype_idx != [] else 0
query_direction_acc += agreeings.float()[query_direction_idx].sum().item() if query_direction_idx != [] else 0
query_shape_acc += agreeings.float()[query_shape_idx].sum().item() if query_shape_idx != [] else 0
compare_more_acc += agreeings.float()[compare_more_idx].sum().item() if compare_more_idx != [] else 0
compare_equal_acc += agreeings.float()[compare_equal_idx].sum().item() if compare_equal_idx != [] else 0
compare_less_acc += agreeings.float()[compare_less_idx].sum().item() if compare_less_idx != [] else 0
attribute_compare_color_acc += agreeings.float()[attribute_compare_color_idx].sum().item() if attribute_compare_color_idx != [] else 0
attribute_compare_size_acc += agreeings.float()[
attribute_compare_size_idx].sum().item() if attribute_compare_size_idx != [] else 0
attribute_compare_actiontype_acc += agreeings.float()[
attribute_compare_actiontype_idx].sum().item() if attribute_compare_actiontype_idx != [] else 0
attribute_compare_direction_acc += agreeings.float()[
attribute_compare_direction_idx].sum().item() if attribute_compare_direction_idx != [] else 0
attribute_compare_shape_acc += agreeings.float()[
attribute_compare_shape_idx].sum().item() if attribute_compare_shape_idx != [] else 0
count_ct += len(count_idx)
exist_ct += len(exist_idx)
query_color_ct += len(query_color_idx)
query_size_ct += len(query_size_idx)
query_actiontype_ct += len(query_actiontype_idx)
query_direction_ct += len(query_direction_idx)
query_shape_ct += len(query_shape_idx)
compare_more_ct += len(compare_more_idx)
compare_equal_ct += len(compare_equal_idx)
compare_less_ct += len(compare_less_idx)
attribute_compare_color_ct += len(attribute_compare_color_idx)
attribute_compare_size_ct += len(attribute_compare_size_idx)
attribute_compare_actiontype_ct += len(attribute_compare_actiontype_idx)
attribute_compare_direction_ct += len(attribute_compare_direction_idx)
attribute_compare_shape_ct += len(attribute_compare_shape_idx)
acc = total_acc / count
if cfg.dataset.name == 'msvd-qa' or cfg.dataset.name == 'msrvtt-qa':
what_acc = what_acc / what_count
who_acc = who_acc / who_count
how_acc = how_acc / how_count
when_acc = when_acc / when_count
where_acc = where_acc / where_count
else:
count_acc = count_acc / count_ct
exist_acc = exist_acc / exist_ct
query_color_acc = query_color_acc / query_color_ct
query_size_acc = query_size_acc / query_size_ct
query_actiontype_acc = query_actiontype_acc / query_actiontype_ct
query_direction_acc = query_direction_acc / query_direction_ct
query_shape_acc = query_shape_acc / query_shape_ct
compare_more_acc = compare_more_acc / compare_more_ct
compare_equal_acc = compare_equal_acc / compare_equal_ct
compare_less_acc = compare_less_acc / compare_less_ct
attribute_compare_color_acc = attribute_compare_color_acc / attribute_compare_color_ct
attribute_compare_size_acc = attribute_compare_size_acc / attribute_compare_size_ct
attribute_compare_actiontype_acc = attribute_compare_actiontype_acc / attribute_compare_actiontype_ct
attribute_compare_direction_acc = attribute_compare_direction_acc / attribute_compare_direction_ct
attribute_compare_shape_acc = attribute_compare_shape_acc / attribute_compare_shape_ct
if not write_preds:
if cfg.dataset.name == 'msvd-qa' or cfg.dataset.name == 'msrvtt-qa':
return acc, avg_loss, avg_app_loss, avg_mo_loss, avg_hard_loss, what_acc, who_acc, how_acc, when_acc, where_acc
else:
return acc, count_acc, exist_acc, query_color_acc, query_size_acc, query_actiontype_acc, query_direction_acc, query_shape_acc, compare_more_acc, compare_equal_acc, compare_less_acc, attribute_compare_color_acc, attribute_compare_size_acc, attribute_compare_actiontype_acc, attribute_compare_direction_acc, attribute_compare_shape_acc
else:
if cfg.dataset.name == 'msvd-qa' or cfg.dataset.name == 'msrvtt-qa':
return acc, all_preds, gts, v_ids, q_ids, what_acc, who_acc, how_acc, when_acc, where_acc
else:
return acc, all_preds, gts, v_ids, q_ids, count_acc, exist_acc, query_color_acc, query_size_acc, query_actiontype_acc, query_direction_acc, query_shape_acc, compare_more_acc, compare_equal_acc, compare_less_acc, attribute_compare_color_acc, attribute_compare_size_acc, attribute_compare_actiontype_acc, attribute_compare_direction_acc, attribute_compare_shape_acc
if __name__ == '__main__':
# python validate.py
parser = argparse.ArgumentParser()
parser.add_argument('--cfg', dest='cfg_file', help='optional config file', default='configs/msvd_qa_DualVGR.yml', type=str)
parser.add_argument('--unit_layers', dest='unit_layers',help='unit_layers', default=1,type=int)
args = parser.parse_args()
if args.cfg_file is not None:
cfg_from_file(args.cfg_file)
assert cfg.dataset.name in ['svqa', 'msrvtt-qa', 'msvd-qa']
# check if the data folder exists
assert os.path.exists(cfg.dataset.data_dir)
device = 'cuda:0' if torch.cuda.is_available() else 'cpu'
cfg.dataset.save_dir = os.path.join(cfg.dataset.save_dir, cfg.exp_name)
ckpt = os.path.join(cfg.dataset.save_dir, 'ckpt','DualVGR42022-04-22_Friday_17:17:09_model.pt') # TODO
assert os.path.exists(ckpt)
# load pretrained model
loaded = torch.load(ckpt, map_location='cpu')
model_kwargs = loaded['model_kwargs']
cfg.dataset.appearance_feat = '{}_appearance_feat_24.h5'
cfg.dataset.motion_feat = '{}_motion_feat_24.h5'
cfg.dataset.vocab_json = '{}_vocab.json'
cfg.dataset.test_question_pt = '{}_test_questions.pt'
cfg.dataset.test_question_pt = os.path.join(cfg.dataset.data_dir,
cfg.dataset.test_question_pt.format(cfg.dataset.name))
cfg.dataset.vocab_json = os.path.join(cfg.dataset.data_dir, cfg.dataset.vocab_json.format(cfg.dataset.name))
cfg.dataset.appearance_feat = os.path.join(cfg.dataset.data_dir, cfg.dataset.appearance_feat.format(cfg.dataset.name))
cfg.dataset.motion_feat = os.path.join(cfg.dataset.data_dir, cfg.dataset.motion_feat.format(cfg.dataset.name))
test_loader_kwargs = {
'question_pt': cfg.dataset.test_question_pt,
'vocab_json': cfg.dataset.vocab_json,
'appearance_feat': cfg.dataset.appearance_feat,
'motion_feat': cfg.dataset.motion_feat,
'test_num': cfg.test.test_num,
'batch_size': cfg.train.batch_size,
'num_workers': cfg.num_workers,
'shuffle': False
}
test_loader = VideoQADataLoader(**test_loader_kwargs)
model_kwargs.update({'vocab': test_loader.vocab})
model_kwargs['unit_layers'] = args.unit_layers
if cfg.model_type == 'DualVGR':
# model = modelset.DualVGR(**model_kwargs).to(device) #TODO
# model = modelset_1.KD_1(**model_kwargs).to(device)
model = modelset_2.KD_2(**model_kwargs).to(device)
model.load_state_dict(loaded['state_dict'])
if cfg.test.write_preds:
acc, preds, gts, v_ids, q_ids, *test_output = validate(cfg, model, test_loader, device, cfg.test.write_preds)
if cfg.dataset.name == 'msvd-qa' or cfg.dataset.name == 'msrvtt-qa':
sys.stdout.write(
'~~~~~~ Test Accuracy: {valid_acc}, What Accuracy: {what_acc}, Who Accuracy: {who_acc}, How Accuracy: {how_acc}, When Accuracy: {when_acc}, Where Accuracy: {where_acc} ~~~~~~~\n'.format(
valid_acc=colored("{:.4f}".format(acc), "red", attrs=['bold']),
what_acc=colored("{:.4f}".format(test_output[0]), "red", attrs=['bold']),
who_acc=colored('{:.4f}'.format(test_output[1]), "red", attrs=['bold']),
how_acc=colored('{:.4f}'.format(test_output[2]), "red", attrs=['bold']),
when_acc=colored('{:.4f}'.format(test_output[3]), "red", attrs=['bold']),
where_acc=colored('{:.4f}'.format(test_output[4]), "red", attrs=['bold'])
))
sys.stdout.flush()
else:
sys.stdout.write(
'~~~~~~ Test Accuracy: {valid_acc}, Count Accuracy: {count_acc}, Exist Accuracy: {exist_acc}, Query_Color Accuracy: {query_color_acc}, '
'Query_Size Accuracy: {query_size_acc}, Query_Actiontype Accuracy: {query_actiontype_acc}, Query_Direction Accuracy: {query_direction_acc},'
'Query_Shape Accuracy: {query_shape_acc}, Compare_More Accuracy: {compare_more_acc}, Compare_Equal Accuracy: {compare_equal_acc}, '
'Compare_Less Accuracy: {compare_less_acc}, Attribute_Compare_Color Accuracy: {attribute_compare_color_acc}, Attribute_Compare_Size Accuracy: {attribute_compare_size_acc},'
'Attribute_Compare_Actiontype Accuracy: {attribute_compare_actiontype_acc}, Attribute_Compare_Direction Accuracy: {attribute_compare_direction_acc},'
'Attribute_Compare_Shape Accuracy: {attribute_compare_shape_acc} ~~~~~~~\n'.format(
valid_acc=colored("{:.4f}".format(acc), "red", attrs=['bold']),
count_acc=colored("{:.4f}".format(test_output[0]), "red", attrs=['bold']),
exist_acc=colored('{:.4f}'.format(test_output[1]), "red", attrs=['bold']),
query_color_acc=colored('{:.4f}'.format(test_output[2]), "red", attrs=['bold']),
query_size_acc=colored('{:.4f}'.format(test_output[3]), "red", attrs=['bold']),
query_actiontype_acc=colored('{:.4f}'.format(test_output[4]), "red", attrs=['bold']),
query_direction_acc=colored('{:.4f}'.format(test_output[5]), "red", attrs=['bold']),
query_shape_acc=colored('{:.4f}'.format(test_output[6]), "red", attrs=['bold']),
compare_more_acc=colored('{:.4f}'.format(test_output[7]), "red", attrs=['bold']),
compare_equal_acc=colored('{:.4f}'.format(test_output[8]), "red", attrs=['bold']),
compare_less_acc=colored('{:.4f}'.format(test_output[9]), "red", attrs=['bold']),
attribute_compare_color_acc=colored('{:.4f}'.format(test_output[10]), "red", attrs=['bold']),
attribute_compare_size_acc=colored('{:.4f}'.format(test_output[11]), "red", attrs=['bold']),
attribute_compare_actiontype_acc=colored('{:.4f}'.format(test_output[12]), "red", attrs=['bold']),
attribute_compare_direction_acc=colored('{:.4f}'.format(test_output[13]), "red", attrs=['bold']),
attribute_compare_shape_acc=colored('{:.4f}'.format(test_output[14]), "red", attrs=['bold'])
))
sys.stdout.flush()
# write predictions for visualization purposes
output_dir = os.path.join(cfg.dataset.save_dir, 'preds')
if not os.path.exists(output_dir):
os.makedirs(output_dir)
else:
assert os.path.isdir(output_dir)
preds_file = os.path.join(output_dir, "test_preds.json")
vocab = test_loader.vocab['question_idx_to_token']
dict = {}
with open(cfg.dataset.test_question_pt, 'rb') as f:
obj = pickle.load(f)
questions = obj['questions']
org_v_ids = obj['video_ids']
org_v_names = obj['video_names']
org_q_ids = obj['question_id']
for idx in range(len(org_q_ids)):
dict[str(org_q_ids[idx])] = [org_v_names[idx], questions[idx]]
instances = [
{'video_id': video_id, 'question_id': q_id, 'video_name': str(dict[str(q_id)][0]), 'question': [vocab[word.item()] for word in dict[str(q_id)][1] if word != 0],
'answer': answer,
'prediction': pred} for video_id, q_id, answer, pred in
zip(np.hstack(v_ids).tolist(),
np.hstack(q_ids).tolist(),
gts,
preds)
]
# write preditions to json file
with open(preds_file, 'w') as f:
json.dump(instances, f)
sys.stdout.write('Display 10 samples...\n')
# Display 10 examples
for idx in range(10):
print('Video name: {}'.format(dict[str(q_ids[idx].item())][0]))
cur_question = [vocab[word.item()] for word in dict[str(q_ids[idx].item())][1] if word != 0]
print('Question: ' + ' '.join(cur_question) + '?')
print('Prediction: {}'.format(preds[idx]))
print('Groundtruth: {}'.format(gts[idx]))
else:
acc, *test_output = validate(cfg, model, test_loader, device, cfg.test.write_preds)
if cfg.dataset.name == 'msvd-qa' or cfg.dataset.name == 'msrvtt-qa':
sys.stdout.write(
'~~~~~~ Test Accuracy: {valid_acc}, What Accuracy: {what_acc}, Who Accuracy: {who_acc}, How Accuracy: {how_acc}, When Accuracy: {when_acc}, Where Accuracy: {where_acc} ~~~~~~~\n'.format(
valid_acc=colored("{:.4f}".format(acc), "red", attrs=['bold']),
what_acc=colored("{:.4f}".format(test_output[0]), "red", attrs=['bold']),
who_acc=colored('{:.4f}'.format(test_output[1]), "red", attrs=['bold']),
how_acc=colored('{:.4f}'.format(test_output[2]), "red", attrs=['bold']),
when_acc=colored('{:.4f}'.format(test_output[3]), "red", attrs=['bold']),
where_acc=colored('{:.4f}'.format(test_output[4]), "red", attrs=['bold'])
))
sys.stdout.flush()
else:
sys.stdout.write(
'~~~~~~ Test Accuracy: {valid_acc}, Count Accuracy: {count_acc}, Exist Accuracy: {exist_acc}, Query_Color Accuracy: {query_color_acc}, '
'Query_Size Accuracy: {query_size_acc}, Query_Actiontype Accuracy: {query_actiontype_acc}, Query_Direction Accuracy: {query_direction_acc},'
'Query_Shape Accuracy: {query_shape_acc}, Compare_More Accuracy: {compare_more_acc}, Compare_Equal Accuracy: {compare_equal_acc}, '
'Compare_Less Accuracy: {compare_less_acc}, Attribute_Compare_Color Accuracy: {attribute_compare_color_acc}, Attribute_Compare_Size Accuracy: {attribute_compare_size_acc},'
'Attribute_Compare_Actiontype Accuracy: {attribute_compare_actiontype_acc}, Attribute_Compare_Direction Accuracy: {attribute_compare_direction_acc},'
'Attribute_Compare_Shape Accuracy: {attribute_compare_shape_acc} ~~~~~~~\n'.format(
valid_acc=colored("{:.4f}".format(acc), "red", attrs=['bold']),
count_acc=colored("{:.4f}".format(test_output[0]), "red", attrs=['bold']),
exist_acc=colored('{:.4f}'.format(test_output[1]), "red", attrs=['bold']),
query_color_acc=colored('{:.4f}'.format(test_output[2]), "red", attrs=['bold']),
query_size_acc=colored('{:.4f}'.format(test_output[3]), "red", attrs=['bold']),
query_actiontype_acc=colored('{:.4f}'.format(test_output[4]), "red", attrs=['bold']),
query_direction_acc=colored('{:.4f}'.format(test_output[5]), "red", attrs=['bold']),
query_shape_acc=colored('{:.4f}'.format(test_output[6]), "red", attrs=['bold']),
compare_more_acc=colored('{:.4f}'.format(test_output[7]), "red", attrs=['bold']),
compare_equal_acc=colored('{:.4f}'.format(test_output[8]), "red", attrs=['bold']),
compare_less_acc=colored('{:.4f}'.format(test_output[9]), "red", attrs=['bold']),
attribute_compare_color_acc=colored('{:.4f}'.format(test_output[10]), "red", attrs=['bold']),
attribute_compare_size_acc=colored('{:.4f}'.format(test_output[11]), "red", attrs=['bold']),
attribute_compare_actiontype_acc=colored('{:.4f}'.format(test_output[12]), "red", attrs=['bold']),
attribute_compare_direction_acc=colored('{:.4f}'.format(test_output[13]), "red", attrs=['bold']),
attribute_compare_shape_acc=colored('{:.4f}'.format(test_output[14]), "red", attrs=['bold'])
))
sys.stdout.flush()