-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsva_recount.Rmd
423 lines (344 loc) · 20.9 KB
/
sva_recount.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
---
title: "SVA Recount"
author: "Christopher Lo"
date: "9/19/2022"
output: pdf_document
---
```{r setup, include=FALSE}
knitr::opts_chunk$set(echo = TRUE)
```
```{r echo=F, message=F, warning=F}
library(tidyverse)
library(recount3)
library(sva)
library(DESeq2)
library(grid)
library(gridExtra)
library(fastDummies)
library(ggfortify)
theme_set(theme_bw())
```
## Introduction
*What happens to the number of Surrogate Variables as we increase the number of studies in recount3?*
To illustrate this, we examined 4 studies that involved case/control prostate tumor and normal samples,
with a minimal of 25 samples per study. For each study, we examined the number of SVs (using method = "be"),
and we also aggregated them one by one and examined the number of SVs.
1. SRP118614: "Overall design: Matched high-grade (GS=7(4+3)) prostate tumor and adjacent
normal specimens from 16 patients (8 AAM and 8 EAM) were subjected to two
replicate runs of RNA-sequencing."
2. SRP002628: "Overall design: We sequenced the transcriptome (polyA+) of 20 prostate cancer
tumors and 10 matched normal tissues using Illumina GAII platform.
Then we used bioinformatic approaches to identify prostate cancer specific
aberrations which include gene fusion, alternative splicing, somatic mutation."
3. SRP212704: "Overall design: Strand specific total RNA seq was performed using frozen
patient matched prostate cancer tissue in biological duplicates.
Purpose: The goal of present study is to compare transcript level changes
between normal and tumor of same individuals"
4. SRP027258: "We utilized RNA sequencing to test the hypothesis that SFN modifies the
expression of genes that are critical in prostate cancer progression.
Normal prostate epithelial cells, and androgen-dependent and androgen-independent
prostate cancer cells were treated with 15 µM SFN and the transcriptome was
determined at 6 and 24 hour time points."
We also have a second case/control set on TB samples.
1. SRP098758 (n=428): "Samples are collected from subjects in a household contact study after a person comes back to the household, diagnosed with TB. Samples are collected every 6 months up to, 18 months. Some people go on to develop TB (cases) where as some others do not (controls). Here we are trying to establish a gene signature to predict the occurrence of TB."
2. ERP115010 (n=360): "Close contacts of active TB were defined as individuals with a cumulative duration of exposure of greater than eight hours in a confined space to the index case prior to initiation of treatment. Known human immunodeficiency virus (HIV)-positive patients were excluded. At enrollment, interferon gamma release assays (IGRAs) were done using the QuantiFERON-TB Plus assay (Qiagen, Germany), and peripheral blood was collected into Tempus tubes for whole genome transcriptional profiling by RNA sequencing. Participants who progressed to active TB were identified by linkage with the national electronic TB register. Local case notes were reviewed to identify individuals who had received preventative treatment. This submission contains data from n=360 adult participants, of which n=9 progressed to TB during a median follow-up time of 1.9 years. [note: we identify case base on IGRA assay result, which does not distinguish active vs. latent TB. ]
3. SRP126580 (n=54): "Overall design: We undertook RNA Sequencing (RNA-Seq) of our earlier Berry et al. 2010 (GSE19444 and GSE19442) cohorts and additionally set up a prospective cohort study at Leicester (UK) in subject groups of incident TB and recent TB contacts, respectively. In the Leicester cohort, we performed systematic longitudinal sampling and clinical characterisation first, to validate our TB signature using RNA-Seq in a new and independent cohort of individuals with active TB and LTBI, and secondly to provide longitudinal data in a low TB incidence setting. All samples in this series were re-analyzed from GSE19444. There are links on each sample page to the original sample." [*QC note: 28% of genes have count of 0*]
```{r echo=F, message=F}
#Setup recount3
human_projects <- available_projects()
```
```{r echo=F, message=F}
#Studies we want to look at, and what we should grep for to find the case status
#under "sra.sample_attributes"
prostateCancerStudies = data.frame(studyName = c("SRP118614", "SRP002628", "SRP212704", "SRP027258"),
caseStatus_grep = c("prostate tumor", "Prostate cancer tissue", "Tumor", "prostate cancer"))
TB_Studies = data.frame(studyName = c("SRP098758", "ERP115010", "SRP126580"),
caseStatus_grep = c("case", "positive", "Active_TB"))
```
```{r echo=F, message=F}
#Define analysis functions.
analyzeSingleStudy = function(studyName, caseStatus_grep, logPlot = F) {
#Load in phenotype metadata
proj_info <- subset(human_projects, project == studyName)
rse_gene <- create_rse(proj_info)
phenotype = data.frame(colData(rse_gene))
phenotype$caseStatus = grepl(caseStatus_grep, phenotype$sra.sample_attributes)
mod = model.matrix(~caseStatus, data = phenotype)
#Load in raw counts, and nomralize it via sizeFactors from DESeq.
geneCounts = assays(rse_gene)$raw_counts
dds <- DESeqDataSetFromMatrix(countData = geneCounts, colData = phenotype, design = ~ caseStatus)
dds <- estimateSizeFactors(dds)
geneCountsNormalized <- counts(dds, normalized = TRUE)
#Summary statistics of sizeFactors.
print(qplot(sizeFactors(dds), main = "Sizefactor estimates per sample"))
print(qplot(colSums(geneCountsNormalized), main = paste0("Normalized total counts per sample for ", studyName)))
#Estimate number of SVs
n.sv = num.sv(geneCountsNormalized, mod, method = "be", vfilter = 3000)
#PCA analysis
pca = prcomp(t(geneCountsNormalized))
variance = pca$sdev^2 / sum(pca$sdev^2)
variance = variance[1:round(ncol(geneCounts) / 4, 1)]
#PCA plots
g = qplot(c(1:length(variance)), variance) + geom_line() + geom_point() +
geom_hline(yintercept = 1/ncol(geneCounts), linetype = "dashed") +
xlab("Principal Component") + ylab("Variance Explained") +
ggtitle(paste0(studyName, "\nNumber of SVs: ", n.sv)) +
ylim(0, 1)
print(g)
if(logPlot) {
g = qplot(c(1:length(variance)), log10(variance)) + geom_line() + geom_point() +
geom_hline(yintercept = log10(1/ncol(geneCounts)), linetype = "dashed") +
xlab("Principal Component") + ylab("log10(Variance Explained)") +
ggtitle(paste0(studyName, "\nNumber of SVs: ", n.sv))
print(g)
}
print(autoplot(pca, data = phenotype, colour = 'caseStatus'))
#Estimate SVs:
nullMod = as.matrix(mod[, 1])
svobj = sva(geneCountsNormalized, mod, nullMod, n.sv = n.sv, vfilter = 3000)
#Regression
modsv = cbind(mod, svobj$sv)
fitsv = lm.fit(modsv, t(geneCountsNormalized))
return(list(svobj = svobj,
geneCounts = geneCounts, #return raw counts.
mod = mod,
fitsv = fitsv))
}
```
```{r echo=F, message=F}
#Define analysis functions.
sum_of_span_residue = function(X, Y) {
X = as.matrix(X)
Y = as.matrix(Y)
stopifnot(nrow(X) == nrow(Y))
#normalize X and Y by columns
X = scale(X)
Y = scale(Y)
mod1 = lm.fit(X, Y)
mod1_res = norm(mod1$fitted.values - Y, type = "F") / (nrow(Y) * ncol(Y))
mod2 = lm.fit(Y, X)
mod2_res = norm(mod2$fitted.values - X, type = "F") / (nrow(X) * ncol(X))
return(mod1_res + mod2_res)
}
analyzeMultipleStudies = function(mods, geneCounts, singleStudy_SV, studyNames, forcedNumSV, logPlot = F) {
stopifnot(class(mods) == "list", class(geneCounts) == "list", class(studyNames) == "character")
stopifnot(length(mods) > 1, length(geneCounts) > 1, length(studyNames) > 1)
#Get study variable
studyNamesLong = character()
for(j in 1:length(studyNames)) {
studyNamesLong = c(studyNamesLong,
rep(studyNames[j], ncol(geneCounts[[j]])))
}
#Get sample size for each study
singleStudy_size = unlist(lapply(singleStudy_SV, function(x) nrow(x$sv)))
#Collapse geneCounts to dataframe
geneCounts = do.call(cbind, geneCounts)
#Collapse mods to dataframe, create dummy vars
mods = do.call(rbind, mods)
mods = dummy_cols(mods, select_columns = "i", remove_selected_columns = T,
remove_first_dummy = T)
mods = as.matrix(mods)
#normalize across studies
mods2 = as.data.frame(mods)
for(col in 1:ncol(mods2)) {
mods2[, col] = as.factor(mods2[, col])
}
dds <- DESeqDataSetFromMatrix(countData = geneCounts, colData = mods2, design = ~ caseStatusTRUE)
dds <- estimateSizeFactors(dds)
geneCountsNormalized <- counts(dds, normalized=TRUE)
#SVA analysis
n.sv = num.sv(geneCountsNormalized, as.matrix(mods), method = "be", vfilter = 3000)
#PCA analysis
pca = prcomp(t(geneCountsNormalized))
variance = pca$sdev^2 / sum(pca$sdev^2)
variance = variance[1:round(ncol(geneCounts) / 4, 1)]
#PCA plots
g = qplot(c(1:length(variance)), variance) + geom_line() + geom_point() +
geom_hline(yintercept = 1/ncol(geneCounts), linetype = "dashed") +
xlab("Principal Component") + ylab("Variance Explained") +
ggtitle(paste0(studyNames, collapse = " + "),
subtitle = paste0("Number of SVs: ", n.sv)) +
ylim(0, 1)
print(g)
if(logPlot) {
g = qplot(c(1:length(variance)), log10(variance)) + geom_line() + geom_point() +
geom_hline(yintercept = log10(1/ncol(geneCounts)), linetype = "dashed") +
xlab("Principal Component") + ylab("log10(Variance Explained)") +
ggtitle(paste0(studyNames, collapse = " + "),
subtitle = paste0("Number of SVs: ", n.sv))
print(g)
}
mods_plot = as.data.frame(mods)
mods_plot$studyName = studyNamesLong
mods_plot$caseStatusTRUE = as.factor(mods_plot$caseStatusTRUE)
print(autoplot(pca, data = mods_plot, colour = 'studyName', shape = 'caseStatusTRUE'))
#Infer SV
nullMods = mods[, -2]
svobj = sva(geneCountsNormalized, mods, nullMods, n.sv = n.sv, vfilter = 3000)
#Forced SVs
span_residue = expand.grid(n.sv = 1:(forcedNumSV + 6),
study = 1:length(singleStudy_SV))
span_residue$residue = NA
for(n.sv in unique(span_residue$n.sv)) {
forced_svobj = tryCatch({
sva(geneCountsNormalized, mods, nullMods, n.sv = n.sv, vfilter = 3000)
}, error = function(e) {
joint_svobj_forced = NA
}, finally = {})
for(study in unique(span_residue$study)) {
if(study == 1) {
idx_start = 1
idx_end = singleStudy_size[1]
}else {
idx_start = singleStudy_size[study - 1] + 1
idx_end = singleStudy_size[study - 1] + singleStudy_size[study]
}
if(!is.na(forced_svobj)) {
residue = sum_of_span_residue(singleStudy_SV[[study]]$sv,
forced_svobj$sv[idx_start:idx_end ,])
span_residue$residue[span_residue$n.sv == n.sv & span_residue$study == study] = residue
}
}
}
return(list(svobj = svobj,
span_residue = span_residue))
}
```
```{r echo=F, message=F}
#Run analysis here.
#runAnalysis = function(study_info, logPlot = F) {
study_info = prostateCancerStudies
logPlot = F
agg_mods = list()
agg_geneCounts = list()
singleStudy_SV = list()
singleStudy_coefs = list()
multiStudy_SV = list()
multiStudy_span_residue = list()
expected_multiStudy_SV = 0
expected_multiStudy_SV_all = c()
for(i in 1:nrow(study_info)) {
cat(i, "\n")
study_i = analyzeSingleStudy(study_info$studyName[i],
study_info$caseStatus_grep[i],
logPlot)
agg_mods[[i]] = as.matrix(cbind(study_i$mod, i))
agg_geneCounts[[i]] = study_i$geneCounts
singleStudy_SV[[i]] = study_i$svobj
singleStudy_coefs[[i]] = study_i$fitsv$coefficients
expected_multiStudy_SV = expected_multiStudy_SV + study_i$svobj$n.sv
if(i > 1) {
multiStudy_i = analyzeMultipleStudies(agg_mods,
agg_geneCounts,
singleStudy_SV,
study_info$studyName[1:i],
expected_multiStudy_SV,
logPlot)
expected_multiStudy_SV_all[i] = expected_multiStudy_SV
multiStudy_SV[[i]] = multiStudy_i$svobj
multiStudy_span_residue[[i]] = multiStudy_i$span_residue
}
}
```
```{r echo=F, message=F, fig.width=12, fig.height=10}
residue_plot_max = .2
plots = list()
blank <- grid.rect(gp=gpar(col="white"))
plots[[1]] = ggplot(multiStudy_span_residue[[2]] %>% filter(study == 1), aes(n.sv, residue)) + geom_point() + geom_line() + geom_vline(xintercept = multiStudy_SV[[2]]$n.sv, color = "red") + geom_vline(xintercept = expected_multiStudy_SV_all[2], color = "blue") + scale_y_continuous(limits = c(0, residue_plot_max))
plots[[2]] = ggplot(multiStudy_span_residue[[2]] %>% filter(study == 2), aes(n.sv, residue)) + geom_point() + geom_line() + geom_vline(xintercept = multiStudy_SV[[2]]$n.sv, color = "red") + geom_vline(xintercept = expected_multiStudy_SV_all[2], color = "blue") + scale_y_continuous(limits = c(0, residue_plot_max))
plots[[3]] = blank
plots[[4]] = blank
plots[[5]] = ggplot(multiStudy_span_residue[[3]] %>% filter(study == 1), aes(n.sv, residue)) + geom_point() + geom_line() + geom_vline(xintercept = multiStudy_SV[[3]]$n.sv, color = "red") + geom_vline(xintercept = expected_multiStudy_SV_all[3], color = "blue") + scale_y_continuous(limits = c(0, residue_plot_max))
plots[[6]] = ggplot(multiStudy_span_residue[[3]] %>% filter(study == 2), aes(n.sv, residue)) + geom_point() + geom_line() + geom_vline(xintercept = multiStudy_SV[[3]]$n.sv, color = "red") + geom_vline(xintercept = expected_multiStudy_SV_all[3], color = "blue") + scale_y_continuous(limits = c(0, residue_plot_max))
plots[[7]] = ggplot(multiStudy_span_residue[[3]] %>% filter(study == 3), aes(n.sv, residue)) + geom_point() + geom_line() + geom_vline(xintercept = multiStudy_SV[[3]]$n.sv, color = "red") + geom_vline(xintercept = expected_multiStudy_SV_all[3], color = "blue") + scale_y_continuous(limits = c(0, residue_plot_max))
plots[[8]] = blank
plots[[9]] = ggplot(multiStudy_span_residue[[4]] %>% filter(study == 1), aes(n.sv, residue)) + geom_point() + geom_line() + geom_vline(xintercept = multiStudy_SV[[4]]$n.sv, color = "red") + geom_vline(xintercept = expected_multiStudy_SV_all[4], color = "blue") + scale_y_continuous(limits = c(0, residue_plot_max))
plots[[10]] = ggplot(multiStudy_span_residue[[4]] %>% filter(study == 2), aes(n.sv, residue)) + geom_point() + geom_line() + geom_vline(xintercept = multiStudy_SV[[4]]$n.sv, color = "red") + geom_vline(xintercept = expected_multiStudy_SV_all[4], color = "blue") + scale_y_continuous(limits = c(0, residue_plot_max))
plots[[11]] = ggplot(multiStudy_span_residue[[4]] %>% filter(study == 3), aes(n.sv, residue)) + geom_point() + geom_line() + geom_vline(xintercept = multiStudy_SV[[4]]$n.sv, color = "red") + geom_vline(xintercept = expected_multiStudy_SV_all[4], color = "blue") + scale_y_continuous(limits = c(0, residue_plot_max))
plots[[12]] = ggplot(multiStudy_span_residue[[4]] %>% filter(study == 4), aes(n.sv, residue)) + geom_point() + geom_line() + geom_vline(xintercept = multiStudy_SV[[4]]$n.sv, color = "red") + geom_vline(xintercept = expected_multiStudy_SV_all[4], color = "blue") + scale_y_continuous(limits = c(0, residue_plot_max))
grid.arrange(grobs = plots, nrow = 3)
```
```{r echo=F, message=F, fig.width=12, fig.height=9}
myPairs = function(df1, df2, bottom = "", left = "") {
stopifnot(nrow(df1) == nrow(df2))
plots = list()
k = 1
for(i in 1:ncol(df1)) {i
for (j in 1:ncol(df2)) {
correlation = round(cor(df1[, i], df2[, j]), 2)
df = data.frame(x = df1[, i], y = df2[, j])
plots[[k]] = ggplot(df, aes(x, y)) + geom_point(size = .8) + ggtitle(correlation) +
theme(axis.text.x=element_blank(),
axis.text.y=element_blank(),
axis.ticks=element_blank(),
legend.position="none",
axis.title.x=element_blank(),
axis.title.y=element_blank())
k = k + 1
}
}
top = paste0("SV Spanning Score: ", round(sum_of_span_residue(df1, df2), 4))
print(marrangeGrob(plots, nrow = ncol(df1), ncol = ncol(df2), top = top, bottom = bottom, left = left))
}
```
```{r echo=F}
coefs = cbind(t(singleStudy_coefs[[1]][3:5 ,]),
t(singleStudy_coefs[[2]][3:6 ,]),
singleStudy_coefs[[3]][3 ,],
t(singleStudy_coefs[[4]][3:4 ,]))
cor(coefs)
```
```{r echo=F, fig.width=10, fig.height=8}
# Compare the SVs to make sure they are similar between the joint and separate
# analyses by plotting combinations of SVs against each other for the same samples
#
# multiStudy2SV1 = multiStudy_SV[[2]]$sv[1:nrow(singleStudy_SV[[1]]$sv) ,]
# multiStudy2ForcedSV1 = multiStudy_forced_SV[[2]]$sv[1:nrow(singleStudy_SV[[1]]$sv) ,]
# multiStudy2SV2 = multiStudy_SV[[2]]$sv[(nrow(singleStudy_SV[[1]]$sv)+1):nrow(multiStudy_forced_SV[[2]]$sv) ,]
# multiStudy2ForcedSV2 = multiStudy_forced_SV[[2]]$sv[(nrow(singleStudy_SV[[1]]$sv)+1):nrow(multiStudy_forced_SV[[2]]$sv) ,]
#
# multiStudy3SV1 = multiStudy_SV[[3]]$sv[1:nrow(singleStudy_SV[[1]]$sv) ,]
# multiStudy3ForcedSV1 = multiStudy_forced_SV[[3]]$sv[1:nrow(singleStudy_SV[[1]]$sv) ,]
# multiStudy3SV2 = multiStudy_SV[[3]]$sv[(nrow(singleStudy_SV[[1]]$sv)+1):(nrow(singleStudy_SV[[1]]$sv)+nrow(singleStudy_SV[[2]]$sv)) ,]
# multiStudy3ForcedSV2 = multiStudy_forced_SV[[3]]$sv[(nrow(singleStudy_SV[[1]]$sv)+1):(nrow(singleStudy_SV[[1]]$sv)+nrow(singleStudy_SV[[2]]$sv)) ,]
# multiStudy3SV3 = multiStudy_SV[[3]]$sv[(nrow(singleStudy_SV[[1]]$sv)+nrow(singleStudy_SV[[2]]$sv)+1):nrow(multiStudy_forced_SV[[3]]$sv) ,]
# multiStudy3ForcedSV3 = multiStudy_forced_SV[[3]]$sv[(nrow(singleStudy_SV[[1]]$sv)+nrow(singleStudy_SV[[2]]$sv)+1):nrow(multiStudy_forced_SV[[3]]$sv) ,]
#
# multiStudy4SV1 = multiStudy_SV[[4]]$sv[1:nrow(singleStudy_SV[[1]]$sv) ,]
# multiStudy4ForcedSV1 = multiStudy_forced_SV[[4]]$sv[1:nrow(singleStudy_SV[[1]]$sv) ,]
# multiStudy4SV2 = multiStudy_SV[[4]]$sv[(nrow(singleStudy_SV[[1]]$sv)+1):(nrow(singleStudy_SV[[1]]$sv)+nrow(singleStudy_SV[[2]]$sv)) ,]
# multiStudy4ForcedSV2 = multiStudy_forced_SV[[4]]$sv[(nrow(singleStudy_SV[[1]]$sv)+1):(nrow(singleStudy_SV[[1]]$sv)+nrow(singleStudy_SV[[2]]$sv)) ,]
# multiStudy4SV3 = multiStudy_SV[[4]]$sv[(nrow(singleStudy_SV[[1]]$sv)+nrow(singleStudy_SV[[2]]$sv)+1):(nrow(singleStudy_SV[[1]]$sv)+nrow(singleStudy_SV[[2]]$sv)+nrow(singleStudy_SV[[3]]$sv)) ,]
# multiStudy4ForcedSV3 = multiStudy_forced_SV[[4]]$sv[(nrow(singleStudy_SV[[1]]$sv)+nrow(singleStudy_SV[[2]]$sv)+1):(nrow(singleStudy_SV[[1]]$sv)+nrow(singleStudy_SV[[2]]$sv)+nrow(singleStudy_SV[[3]]$sv)) ,]
# multiStudy4SV4 = multiStudy_SV[[4]]$sv[(nrow(singleStudy_SV[[1]]$sv)+nrow(singleStudy_SV[[2]]$sv) + nrow(singleStudy_SV[[3]]$sv)+1):nrow(multiStudy_forced_SV[[4]]$sv) ,]
# multiStudy4ForcedSV4 = multiStudy_forced_SV[[4]]$sv[(nrow(singleStudy_SV[[1]]$sv)+nrow(singleStudy_SV[[2]]$sv)+nrow(singleStudy_SV[[3]]$sv)+1):nrow(multiStudy_forced_SV[[4]]$sv) ,]
#
# myPairs(singleStudy_SV[[1]]$sv, multiStudy2SV1, left = "Study 1", bottom = "Study 1 + 2")
# myPairs(singleStudy_SV[[2]]$sv, multiStudy2SV2, left = "Study 2", bottom = "Study 1 + 2")
# myPairs(singleStudy_SV[[1]]$sv, multiStudy2ForcedSV1, left = "Study 1", bottom = "Study 1 + 2 forced")
# myPairs(singleStudy_SV[[2]]$sv, multiStudy2ForcedSV2, left = "Study 2", bottom = "Study 1 + 2 forced")
#
# myPairs(singleStudy_SV[[1]]$sv, data.frame(multiStudy3SV1), left = "Study 1", bottom = "Study 1 + 2 + 3")
# myPairs(singleStudy_SV[[2]]$sv, data.frame(multiStudy3SV2), left = "Study 2", bottom = "Study 1 + 2 + 3")
# myPairs(singleStudy_SV[[3]]$sv, data.frame(multiStudy3SV3), left = "Study 3", bottom = "Study 1 + 2 + 3")
# myPairs(singleStudy_SV[[1]]$sv, multiStudy3ForcedSV1, left = "Study 1", bottom = "Study 1 + 2 + 3 forced")
# myPairs(singleStudy_SV[[2]]$sv, multiStudy3ForcedSV2, left = "Study 2", bottom = "Study 1 + 2 + 3 forced")
# myPairs(singleStudy_SV[[3]]$sv, multiStudy3ForcedSV3, left = "Study 3", bottom = "Study 1 + 2 + 3 forced")
#
# myPairs(singleStudy_SV[[1]]$sv, multiStudy4SV1, left = "Study 1", bottom = "Study 1 + 2 + 3 + 4")
# myPairs(singleStudy_SV[[2]]$sv, multiStudy4SV2, left = "Study 2", bottom = "Study 1 + 2 + 3 + 4")
# myPairs(singleStudy_SV[[3]]$sv, multiStudy4SV3, left = "Study 3", bottom = "Study 1 + 2 + 3 + 4")
# myPairs(singleStudy_SV[[4]]$sv, multiStudy4SV4, left = "Study 4", bottom = "Study 1 + 2 + 3 + 4")
# myPairs(singleStudy_SV[[1]]$sv, multiStudy4ForcedSV1, left = "Study 1", bottom = "Study 1 + 2 + 3 + 4 forced")
# myPairs(singleStudy_SV[[2]]$sv, multiStudy4ForcedSV2, left = "Study 2", bottom = "Study 1 + 2 + 3 + 4 forced")
# myPairs(singleStudy_SV[[3]]$sv, multiStudy4ForcedSV3, left = "Study 3", bottom = "Study 1 + 2 + 3 + 4 forced")
# myPairs(singleStudy_SV[[4]]$sv, multiStudy4ForcedSV4, left = "Study 4", bottom = "Study 1 + 2 + 3 + 4 forced")
```
<!-- ## Analysis: Prostate Studies -->
<!-- ```{r echo=F} -->
<!-- runAnalysis(prostateCancerStudies) -->
<!-- ``` -->
<!-- ## Analysis: TB Studies -->
<!-- ```{r echo=F} -->
<!-- runAnalysis(TB_Studies, logPlot = T) -->
<!-- ``` -->