-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathImageUpdate.m
78 lines (70 loc) · 3.59 KB
/
ImageUpdate.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
% Updates the image "u_hat" with mask (region to inpaint) "Mask" using the
% lastly updated offset map "phi". "half_patch_size" is the size of half a
% patch side in the image, "sigma2" is the variance used for the Gaussian
% generation in similarity metrics, "lambda" is used for Poisson metric,
% and "median", "average" and "poisson" are mutually exclusive booleans
% used to determine which metric is to be used.
function u = ImageUpdate(phi, u_hat, mask, half_patch_size, sigma2, lambda, error)
[m1, n, c] = size(u_hat);
m = zeros(m1, n);
mask = repmat(mask, [1, 1, 3]);
% Computation of weights m_zzhat: we need them for each method
% (poisson, median, mean).
for x = 1 + half_patch_size : m1 - half_patch_size
for y = 1 + half_patch_size : n - half_patch_size
X = mask(x - half_patch_size : x + half_patch_size, y - half_patch_size : y + half_patch_size, :);
tmp = phi(x - half_patch_size : x + half_patch_size, y - half_patch_size : y + half_patch_size, :);
delta = tmp(:, :, 3);
delta = repmat(delta, [1, 1, 3]);
g = gaussian(half_patch_size, sigma2, c);
m(x,y) = sum(sum(sum(g .* delta .* X)));
end
end
if (error == 0) % Medians
u = zeros(size(u_hat));
for i = 1 + half_patch_size : m1 - half_patch_size
for j = 1 + half_patch_size : n - half_patch_size
% Sort the value of the patch.
p = u_hat(i - half_patch_size : i + half_patch_size, j - half_patch_size : j + half_patch_size, :);
p = sum(p, 3);
[p_sorted, index] = sort(p(:));
weight = m(i - half_patch_size : i + half_patch_size, j - half_patch_size : j + half_patch_size, :);
total_weight = sum(weight(:));
sum1 = 0;
cnt = 1;
tmp = index(cnt);
% We choose the value of u_zzhat such that sum(weight) =
% total_weight / 2.
while sum1 < total_weight / 2 && cnt + 1 <= length(index)
sum1 = sum1 + weight(tmp);
tmp = index(cnt + 1);
cnt = cnt + 1;
end
u(i, j, :) = p_sorted(index(cnt));
end
end
else % Poisson or means
m = repmat(m, [1, 1, 3]);
F = zeros(size(m));
K = zeros(size(m));
Vx = zeros(size(m));
Vy = zeros(size(m));
% Computation i=of vz, fz and kz for each z in the image.
for x = 1 + half_patch_size : m1 - half_patch_size
for y = 1 + half_patch_size : n-half_patch_size
tmp_m = m(x - half_patch_size : x + half_patch_size, y - half_patch_size : y + half_patch_size, :);
tmp_u = u_hat(x - half_patch_size : x + half_patch_size, y - half_patch_size : y + half_patch_size, :);
K(x, y, :) = sum(sum(tmp_m));
F(x, y, :) = (1 / K(x, y, :)) .* sum(sum(tmp_m .* tmp_u));
Vx(x, y, :) = (1 / K(x, y, :)) .* sum(sum(tmp_m .* gradx(tmp_u)));
Vy(x, y, :) = (1 / K(x, y, :)) .* sum(sum(tmp_m .* grady(tmp_u)));
end
end
% Solve the linear equation with conjugate gradient algorithm.
u = gradient_conjugue(u_hat, 0.1, lambda, K, F, Vx, Vy, 100);
u(mask == 0) = u_hat(mask == 0);
end
% Cropping the image (removing the virtual borders) to get it back to
% its normal size.
u = u(1 + half_patch_size : m1 - half_patch_size, 1 + half_patch_size : n - half_patch_size, :);
end