-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathparams.yaml
432 lines (369 loc) · 15.1 KB
/
params.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
# This file contains all the control parameters, hyperparameters, toggles, etc.
# needed to run the CCAO's automated valuation model
# Parameters in this file are associated with certain stages in the modeling
# pipeline. Changing a parameter means any pipeline stage associated with that
# parameter must be re-run. See dvc.yaml for parameter <-> stage associations
# and https://dvc.org/doc/command-reference/params for more information
# Run Control ------------------------------------------------------------------
# Model tag used to identify the purpose of the run. Must be one of:
# "junk", "rejected", "test", "baseline", "candidate", or "final"
run_type: "test"
# Note included with each run. Use this to summarize what changed about the run
# or add context
run_note: Preparing for 2025 model with 2024 data and updated sales
toggle:
# Should the train stage run full cross-validation? Otherwise, the model
# will be trained with the default hyperparameters specified below
cv_enable: false
# Should SHAP values be calculated for this run in the interpret stage? Can be
# desirable to save time when testing many models
shap_enable: true
# Should comps be calculated for this run in the interpret stage?
comp_enable: true
# Upload all modeling artifacts and results to S3 in the upload stage. Set
# to false if you are not a CCAO employee
upload_enable: true
# Data/Ingest ------------------------------------------------------------------
# Assessment context and dates
assessment:
# Year of assessment. Used to pull land rates, HIEs, and other information
year: "2025"
# The statutorily set "sale date" for the purpose of prediction
date: "2025-01-01"
# Added context for model artifacts stored in S3. Also updates the triad
# displayed in email notifications on model completion
triad: "north"
group: "residential"
# Year from which property characteristics are pulled. Usually lags the
# assessment year by 1
data_year: "2024"
# Year used to partition data on S3. Working year in this case means
# the year the Data Department is currently creating models for
working_year: "2025"
# Parameters used to define the input/training data
input:
# The min and max year of sales to use for the training data sample
min_sale_year: "2016"
max_sale_year: "2024"
# Number of years back to look for count_past_n_years feature
n_years_prior: 4
# Parameters used to generate townhome complex identifiers
complex:
# Townhomes (class 210/295) should match exactly on these variables to be
# considered in the same complex
match_exact:
- "meta_township_code"
- "meta_class"
- "char_bsmt"
- "char_gar1_size"
- "char_attic_fnsh"
- "char_beds"
- "meta_pin_num_cards"
- "meta_tieback_proration_rate"
# Townhomes should match fuzzily on these variables to be in the same
# complex e.g. a PIN with 2000 and a PIN with 2020 square feet will match
match_fuzzy:
rooms: 1
bldg_sf: 25
yrblt: 4
dist_ft: 250
# Cross-validation -------------------------------------------------------------
# Cross-validation parameters used in the train stage
cv:
# Proportion of the training data to use for training vs test, split by time.
# 0.9 means the most recent 10% of sales are used as a test set
split_prop: 0.9
# Number of folds to use for cross-validation. For v-fold CV, the data will be
# randomly split. For rolling-origin, the data will be split into V chunks by
# time, with each chunk/period calculated automatically
num_folds: 10
# The number of months time-based folds should overlap each other. Only
# applicable to rolling-origin CV. See https://www.tmwr.org/resampling#rolling
fold_overlap: 9
# Number of initial iterations to create before tuning. Recommend this number
# be greater than the number of hyperparameters being tuned
initial_set: 20
# Max number of total search iterations
max_iterations: 50
# Max number of search iterations without improvement before stopping search
no_improve: 15
# The number of iterations with no improvement before an uncertainty sample
# is created where a sample with high predicted variance is chosen
uncertain: 8
# Metric used to select the "best" set of parameters from CV iterations. Must
# be manually included the metric_set() passed to tune_bayes()
best_metric: "rmse"
# Model (Hyper)parameters ------------------------------------------------------
# Static and tuneable parameters that define the structure and behavior of the
# model itself
model:
engine: "lightgbm"
# Objective/loss function minimized by LightGBM. See website for possible
# options: https://lightgbm.readthedocs.io/en/latest/Parameters.html#objective
objective: "rmse"
# Parameters related to model determinism. Current settings should force
# the same output every time if the same hyperparameters are used
seed: 2025
deterministic: true
force_row_wise: true
# Model verbosity: < 0: Fatal, = 0: Error (Warning), = 1: Info, > 1: Debug
verbose: -1
predictor:
# Vector of predictors from the training data included in the model. Edit
# this list to add or remove variables from the model
all:
- "meta_township_code"
- "meta_nbhd_code"
- "meta_sale_count_past_n_years"
- "char_yrblt"
- "char_air"
- "char_apts"
- "char_attic_fnsh"
- "char_attic_type"
- "char_beds"
- "char_bldg_sf"
- "char_bsmt"
- "char_bsmt_fin"
- "char_class"
- "char_ext_wall"
- "char_fbath"
- "char_frpl"
- "char_gar1_att"
- "char_gar1_cnst"
- "char_gar1_size"
- "char_hbath"
- "char_land_sf"
- "char_heat"
- "char_ncu"
- "char_porch"
- "char_roof_cnst"
- "char_rooms"
- "char_tp_dsgn"
- "char_type_resd"
- "char_recent_renovation"
- "loc_longitude"
- "loc_latitude"
- "loc_census_tract_geoid"
- "loc_env_flood_fs_factor"
- "loc_school_elementary_district_geoid"
- "loc_school_secondary_district_geoid"
- "loc_access_cmap_walk_nta_score"
- "loc_access_cmap_walk_total_score"
- "loc_tax_municipality_name"
- "prox_num_pin_in_half_mile"
- "prox_num_bus_stop_in_half_mile"
- "prox_num_foreclosure_per_1000_pin_past_5_years"
- "prox_avg_school_rating_in_half_mile"
- "prox_airport_dnl_total"
- "prox_nearest_bike_trail_dist_ft"
- "prox_nearest_cemetery_dist_ft"
- "prox_nearest_cta_route_dist_ft"
- "prox_nearest_cta_stop_dist_ft"
- "prox_nearest_hospital_dist_ft"
- "prox_lake_michigan_dist_ft"
- "prox_nearest_metra_route_dist_ft"
- "prox_nearest_metra_stop_dist_ft"
- "prox_nearest_park_dist_ft"
- "prox_nearest_railroad_dist_ft"
- "prox_nearest_university_dist_ft"
- "prox_nearest_vacant_land_dist_ft"
- "prox_nearest_water_dist_ft"
- "prox_nearest_golf_course_dist_ft"
- "prox_nearest_road_highway_dist_ft"
- "prox_nearest_road_arterial_dist_ft"
- "prox_nearest_road_collector_dist_ft"
- "prox_nearest_road_highway_daily_traffic"
- "prox_nearest_road_arterial_daily_traffic"
- "prox_nearest_road_collector_daily_traffic"
- "prox_nearest_new_construction_dist_ft"
- "prox_nearest_stadium_dist_ft"
- "acs5_percent_age_children"
- "acs5_percent_age_senior"
- "acs5_median_age_total"
- "acs5_percent_household_family_married"
- "acs5_percent_household_nonfamily_alone"
- "acs5_percent_education_high_school"
- "acs5_percent_education_bachelor"
- "acs5_percent_education_graduate"
- "acs5_percent_income_below_poverty_level"
- "acs5_median_income_household_past_year"
- "acs5_median_income_per_capita_past_year"
- "acs5_percent_income_household_received_snap_past_year"
- "acs5_percent_employment_unemployed"
- "acs5_median_household_total_occupied_year_built"
- "acs5_median_household_renter_occupied_gross_rent"
- "acs5_percent_household_owner_occupied"
- "other_tax_bill_rate"
- "other_school_district_elementary_avg_rating"
- "other_school_district_secondary_avg_rating"
- "ccao_is_active_exe_homeowner"
- "ccao_n_years_exe_homeowner"
- "time_sale_year"
- "time_sale_day"
- "time_sale_quarter_of_year"
- "time_sale_month_of_year"
- "time_sale_day_of_year"
- "time_sale_day_of_month"
- "time_sale_day_of_week"
- "time_sale_post_covid"
- "shp_parcel_centroid_dist_ft_sd"
- "shp_parcel_edge_len_ft_sd"
- "shp_parcel_interior_angle_sd"
- "shp_parcel_mrr_area_ratio"
- "shp_parcel_mrr_side_ratio"
- "shp_parcel_num_vertices"
# List of predictors included in predictor.all which are categoricals.
# It is CRITICAL that any categorical variables are included in this list,
# else LightGBM will treat them as numeric
categorical:
- "meta_township_code"
- "meta_nbhd_code"
- "char_air"
- "char_apts"
- "char_attic_fnsh"
- "char_attic_type"
- "char_bsmt"
- "char_bsmt_fin"
- "char_class"
- "char_ext_wall"
- "char_gar1_att"
- "char_gar1_cnst"
- "char_gar1_size"
- "char_heat"
- "char_porch"
- "char_roof_cnst"
- "char_tp_dsgn"
- "char_type_resd"
- "loc_census_tract_geoid"
- "loc_tax_municipality_name"
- "loc_school_elementary_district_geoid"
- "loc_school_secondary_district_geoid"
- "time_sale_quarter_of_year"
# List of identifiers for each observation, can be ignored
id:
- "meta_year"
- "meta_pin"
- "meta_class"
- "meta_card_num"
- "meta_sale_document_num"
parameter:
# For CV only, proportion of the training data to hold out for use in
# early stopping + the metric to evaluate. See R docs for details:
# https://lightgbm.readthedocs.io/en/latest/R/reference/lgb.train.html#arguments
# WARNING: See GitLab issue #82 for critical notes about early stopping / CV
validation_prop: 0.1
validation_type: "random"
validation_metric: "rmse"
# Custom parameters added by the CCAO's lightsnip wrapper package. Setting
# to true will set max_depth = floor(log2(num_leaves)) + add_to_linked_depth
# This is to prevent tune_bayes from exploring useless parameter space
link_max_depth: true
# During CV, the number of iterations to go without improvement before
# stopping training. Early stopping is deactivated when NULL
stop_iter: 50
hyperparameter:
# Default set of hyperparameters to use if CV is not enabled
default:
# Total/maximum number of iterations. Usually changed in tandem with
# learning_rate. One of the most important params controlling complexity
# If cross-validation and early stopping are disabled then the model will
# always train to exactly this number of iterations. The ideal strategy
# for setting this parameter is to discover a good fixed value using CV,
# then manually set that value for non-CV runs (which don't use
# early stopping by default)
num_iterations: 1575
learning_rate: 0.015
# Maximum number of bins for discretizing continuous features. Lower uses
# less memory and speeds up training
max_bin: 512
# See docs for details on each of the remaining parameters:
# https://lightgbm.readthedocs.io/en/latest/Parameters.html
num_leaves: 185
add_to_linked_depth: 4
feature_fraction: 0.61
min_gain_to_split: 75.5
min_data_in_leaf: 31
max_cat_threshold: 165
min_data_per_group: 300
cat_smooth: 82.0
cat_l2: 1.00
lambda_l1: 0.022
lambda_l2: 0.152
# Range of possible hyperparameter values for tuning to explore
range:
# NOTE: If cross-validation is used and/or early stopping is enabled, then
# the upper bound for num_iterations is effectively the MAXIMUM number of
# trees (i.e. the model can stop before reaching this number), and the
# number actual used is reported in the lgbm_final_params object in the
# train stage and parameter_final table in the run outputs/Athena
num_iterations: [100, 2500]
learning_rate: [-3.0, -0.4] # 10 ^ X
max_bin: [50, 512]
num_leaves: [32, 2048]
add_to_linked_depth: [1, 7]
feature_fraction: [0.3, 0.7]
min_gain_to_split: [-3.0, 4.0] # 10 ^ X
min_data_in_leaf: [2, 400]
max_cat_threshold: [10, 250]
min_data_per_group: [2, 400]
cat_smooth: [10.0, 200.0]
cat_l2: [-3, 2] # 10 ^ X
lambda_l1: [-3, 2] # 10 ^ X
lambda_l2: [-3, 2] # 10 ^ X
# Post-Valuation ---------------------------------------------------------------
# Parameters used in the assess stage to finalize the intial model predictions
pv:
# For multi-card PINs (rare), implement a heuristic that caps the potential
# change in value. See assess stage code for details
multicard_yoy_cap: 2.2
# Cap the proportion of the PIN's total value dedicated to land. This is
# necessary since sometimes the model provides low predictions relative to the
# land rates created by Valuations
land_pct_of_total_cap: 0.5
# Rounding settings to apply to initial predictions. Rounding is done to
# indicate to property owners that model values are estimates, not exact
round_break: [1000, 10000, 100000]
round_to_nearest: [1, 500, 5000, 10000]
round_type: "floor"
# Ratio Study ------------------------------------------------------------------
# Years and assessment stages used to calculate YoY changes in the evaluate
# stage. Typically we want to compare new model values with the finalized values
# (post-appeal) from the last reassessment and the most recent values from the
# prior year
ratio_study:
far_year: "2022"
far_stage: "board"
far_column: "meta_2yr_pri_board_tot"
near_year: "2024"
near_stage: "certified"
near_column: "meta_certified_tot"
# Min. number of sales to calculate ratio statistics, per CCAO SOPs. Groups
# must have greater than or equal to the number of sales specified
min_n_sales: 30
# Quantile breakouts to use in the evaluate stage. For example, 3 will split
# each geography in evaluate into terciles
num_quantile: [3, 5, 10]
# Geographies for which to calculate performance statistics in the evaluate
# stage. Each geography is also broken out by class
geographies:
- "meta_township_code"
- "meta_nbhd_code"
- "loc_tax_municipality_name"
- "loc_ward_num"
- "loc_census_puma_geoid"
- "loc_census_tract_geoid"
- "loc_school_elementary_district_geoid"
- "loc_school_secondary_district_geoid"
- "loc_school_unified_district_geoid"
# Comparables ------------------------------------------------------------------
# Parameters related to the experimental comparables finding feature
# in the interpret pipeline stage. Only used if comp_enable = true
comp:
# Number of comps to generate for each PIN/card
num_comps: 5
# Export -----------------------------------------------------------------------
# Final run ID(s) chosen for export to Desk Review spreadsheets and iasWorld
# upload
export:
triad_code: "1"
run_id: "2025-01-10-serene-boni"