-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathv2.0-classify.py
208 lines (141 loc) · 7.53 KB
/
v2.0-classify.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
######################################################################################## Remove warnings
import warnings
warnings.filterwarnings("ignore", category=DeprecationWarning)
def warn(*args, **kwargs):
pass
import warnings
warnings.warn = warn
######################################################################################## Importing Modules
from sklearn.model_selection import train_test_split as tts
from sklearn import svm
from sklearn import tree
import pandas as pd
import numpy
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.ensemble import RandomForestClassifier
from sklearn.ensemble import ExtraTreesClassifier
from sklearn.ensemble import AdaBoostClassifier
from sklearn.ensemble import GradientBoostingClassifier
from sklearn.neural_network import MLPClassifier
from sklearn.naive_bayes import GaussianNB
from sklearn.ensemble import VotingClassifier
from sklearn.model_selection import cross_val_score
import re
######################################################################################## Loading data & Preprocessing
# Load the dataset - CSV input
data = pd.read_csv('data/class_full.csv',
encoding='latin1',
error_bad_lines=False,
delimiter=';')
# Define column names & Change label to Pandas "Category"
data.columns = ['desc', 'value', 'label']
data['desc'] = data['desc'].str.replace('[^\w\s]','')
data['label'] = data['label'].astype('category')
# Assign data as "string"
labels = data['label'].values.astype(str)
feature1 = data['desc'].values.astype(str)
feature2 = data['value'].values
# Vectorizes strings with Tf-IDF Vectorizer
vectorizer = TfidfVectorizer()
vectors = vectorizer.fit_transform(feature1) # Train Data
vectors_ = vectorizer.transform(feature1) # Test Data
######################################################################################## Fitting the models
#Test
train_features, test_features, train_labels, test_labels = tts(vectors, labels, test_size=0.05)
# Random Forest Classifier
print('\nEstimating score with Random Forest Classifier...')
forest_model = RandomForestClassifier(random_state=42)
forest_model.fit(train_features, train_labels)
predictions_forest = forest_model.predict(vectors_)
print('Score: {:.2f}'.format(forest_model.score(test_features, test_labels)*100) + ' Random Forest Classifier')
# Decision Tree Classifier
print('\nEstimating score with Decision Tree Classifier...')
tree_model = tree.DecisionTreeClassifier(random_state=42)
tree_model.fit(train_features, train_labels)
predictions_tree = tree_model.predict(vectors_)
print('Score: {:.2f}'.format(tree_model.score(test_features, test_labels)*100) + ' Decistion Tree Classifier')
# SVC Linear Classifier
print('\nEstimating score with SVC Linear Classifier...')
svc_model = svm.SVC(kernel='linear', random_state=42, probability=True)
svc_model.fit(train_features, train_labels)
predictions_svc = svc_model.predict(vectors_)
print('Score: {:.2f}'.format(svc_model.score(test_features, test_labels)*100) + ' SVC Linear Classifier')
# ExtraTree Classifier
print('\nEstimating score with ExtraTree Classifier...')
extra_model = ExtraTreesClassifier(n_estimators=100, max_depth=None, min_samples_split=10, random_state=42)
extra_model.fit(train_features, train_labels)
predictions_extra = extra_model.predict(vectors_)
print('Score: {:.2f}'.format(extra_model.score(test_features, test_labels)*100) + ' ExtraTree Classifier')
######################################################################################## Print consolidated results and accuracy
# Print of all results
print('\nScore: {:.2f}'.format(forest_model.score(test_features, test_labels)*100) + ' Random Forest Classifier')
print('Score: {:.2f}'.format(tree_model.score(test_features, test_labels)*100) + ' Decistion Tree Classifier')
print('Score: {:.2f}'.format(svc_model.score(test_features, test_labels)*100) + ' SVC Linear Classifier')
print('Score: {:.2f}'.format(extra_model.score(test_features, test_labels)*100) + ' ExtraTree Classifier\n')
# Voting Classifier
eclf = VotingClassifier(estimators=[
('lr', forest_model),
('rf', tree_model),
('svc', svc_model),
('extra', extra_model)
], voting='soft')
for clf, label in zip( [forest_model, tree_model, svc_model, extra_model, eclf],
['Random Forest', 'Decision Tree', 'SVC', 'Extra']):
scores = cross_val_score(clf, test_features, test_labels, cv=5, scoring='accuracy')
print("Accuracy: %0.2f (+/- %0.2f) [%s]" % (scores.mean(), scores.std(), label))
######################################################################################## Make Predictions
# Statement to be classified
statement = pd.read_csv('data/extrato.csv',
encoding='latin1',
error_bad_lines=False,
delimiter=',')
# Defining the column and vectorizing it
newFeatures = statement['memo'].values.astype(str)
newVectorizer = TfidfVectorizer()
newVector = newVectorizer.fit_transform(newFeatures)
newVector_ = newVectorizer.transform(newFeatures)
# Predictions with Random Forest, Decision Tree & SVC models
predictions_forest = forest_model.predict(vectorizer.transform(newFeatures))
predictions_forest = numpy.asarray(predictions_forest)
predictions_forest = pd.DataFrame(predictions_forest)
predictions_tree = tree_model.predict(vectorizer.transform(newFeatures))
predictions_tree = numpy.asarray(predictions_tree)
predictions_tree = pd.DataFrame(predictions_tree)
predictions_svc = svc_model.predict(vectorizer.transform(newFeatures))
predictions_svc = numpy.asarray(predictions_svc)
predictions_svc = pd.DataFrame(predictions_svc)
predictions_extra = extra_model.predict(vectorizer.transform(newFeatures))
predictions_extra = numpy.asarray(predictions_extra)
predictions_extra = pd.DataFrame(predictions_extra)
# Finding probabilities for each of the assigned categories
forest_prob = forest_model.predict_proba(vectorizer.transform(newFeatures))
forest_prob = numpy.asarray(forest_prob)
forest_prob = pd.DataFrame(forest_prob)
forest_prob = forest_prob.max(axis=1)
tree_prob = tree_model.predict_proba(vectorizer.transform(newFeatures))
tree_prob = numpy.asarray(tree_prob)
tree_prob = pd.DataFrame(tree_prob)
tree_prob = tree_prob.max(axis=1)
svc_prob = svc_model.predict_proba(vectorizer.transform(newFeatures))
svc_prob = numpy.asarray(svc_prob)
svc_prob = pd.DataFrame(svc_prob)
svc_prob = svc_prob.max(axis=1)
extra_prob = extra_model.predict_proba(vectorizer.transform(newFeatures))
extra_prob = numpy.asarray(extra_prob)
extra_prob = pd.DataFrame(extra_prob)
extra_prob = extra_prob.max(axis=1)
######################################################################################## Export and consolidate predictions
csv_pred = pd.concat([ predictions_forest, forest_prob,
predictions_tree, tree_prob,
predictions_svc, svc_prob,
predictions_extra, extra_prob],
axis=1)
csv_pred.to_csv("data/predictions.csv")
consolidated = pd.concat([statement, csv_pred], axis=1)
consolidated.columns = ['type', 'date', 'amount', 'memo', 'id',
'forest_predict', 'forest_prob',
'tree_predict', 'tree_prob',
'svc_predict', 'svc_prob',
'extra_predict', 'extra_prob']
consolidated.to_csv("data/consolidated.csv")
######################################################################################## END