diff --git a/README.md b/README.md index 183fa7d..894a621 100644 --- a/README.md +++ b/README.md @@ -17,7 +17,7 @@ # MQT Quantum Auto Optimizer: Automatic Framework for Solving Optimization Problems with Quantum Computers -MQT Quantum Auto Optimizer is a framework that allows one to automatically translate an optimization problem into a quantum-compliant formulation and to solve it with one of the main quantum solvers (Quantum Annelar, QAOA, VQE and GAS) +MQT Quantum Auto Optimizer is a framework that allows one to automatically translate an optimization problem into a quantum-compliant formulation and to solve it with one of the main quantum solvers (Quantum Annealar, Quantum Approximate Optimization Algorithm, Variational Quantum Eigensolver and Grover Adaptive Search) MQT Quantum Auto Optimizer is part of the [Munich Quantum Toolkit (MQT)](https://mqt.readthedocs.io/) developed by the [Chair for Design Automation](https://www.cda.cit.tum.de/) at the [Technical University of Munich](https://www.tum.de/). This framework has been developed in collaboration with the [VLSI Lab](https://www.vlsilab.polito.it/) of [Politecnico di Torino](https://www.polito.it). diff --git a/docs/Constraints.rst b/docs/Constraints.rst index ed74aab..17326ea 100644 --- a/docs/Constraints.rst +++ b/docs/Constraints.rst @@ -25,7 +25,8 @@ The class provides methods to declare variables: - *hard* parameter is a boolean that indicates if the constraint is hard or soft. - *variable_precision* parameter is a boolean that indicates if the constraint is to be considered in the precision of the variables. -Examples: +Example: +-------- .. code-block:: python diff --git a/docs/ObjectiveFunction.rst b/docs/ObjectiveFunction.rst index 98e723a..d2fd192 100644 --- a/docs/ObjectiveFunction.rst +++ b/docs/ObjectiveFunction.rst @@ -13,6 +13,9 @@ The class provides methods to declare variables: - *minimization* parameter specifies if the objective function is to be minimized or maximized (optimization direction). - *weight* parameter is the weight of the objective function in case of multi-objective optimization. +Example: +-------- + .. code-block:: python from mqt.qao.constraints import Constraints diff --git a/docs/Problem.rst b/docs/Problem.rst index d6f0221..2f1e6bb 100644 --- a/docs/Problem.rst +++ b/docs/Problem.rst @@ -27,6 +27,9 @@ and a method for obtaining the HUBO or PUBO formulation of the problem as qubove - 'manual' - *lambda_value* The value of the lambda parameter if the use want to manually select it. The default value is 1.0. +Example: +-------- + .. code-block:: python from mqt.qao.constraints import Constraints diff --git a/docs/Solution.rst b/docs/Solution.rst index f660f6e..fcd1d17 100644 --- a/docs/Solution.rst +++ b/docs/Solution.rst @@ -1,2 +1,82 @@ Solution Class ============== + +It is a class that is used to store all the information about the solution of the problem. + +Solution Attributes +------------------- + +The class has the following attributes: + +- energies: list[float], i.e. the list of energies of the solution obtained in each run +- best_energy, i.e. the lowest energy obtained in all the runs +- best_solution: dict[str, Any], i.e. the best solution obtained in all the runs in binary variables +- best_solution_original_var: dict[str, Any], i.e. the best solution obtained in all the runs in variables originally declared +- solutions_original_var: list[dict[str, Any]], i.e. the list of solutions obtained in each run in variables originally declared +- solutions: list[dict[str, Any]], i.e. the list of solutions obtained in each run in binary variables +- time: float: the time taken to solve the problem +- solver_info: dict[str, Any], i.e. the information about the solver setting to solve the problem + + +Solution Methods +---------------- + +The class has the following methods for helping users in analyzing the solution: + +- *optimal_solution_cost_functions_values()*: This method is used to get the cost functions values of the best solution obtained in all the runs +- *check_constraint_optimal_solution()*: This method is used to check if the best solution obtained in all the runs satisfies the constraints +- *check_constraint_all_solutions()*: This method is used to check if all the solutions obtained in all the runs satisfy the constraints +- *show_cumulative(save: bool = False, show: bool = True, filename: str = "", label: str = "", latex: bool = False)* : This method is used to show the cumulative plot of the energies obtained in all the runs. The parameters are: + - save: bool, i.e. whether to save the plot or not in a file + - show: bool, i.e. whether to show the plot or not + - filename: str, i.e. the name of the file where the plot will be saved + - label: str, i.e. the label of the plot + - latex: bool, i.e. whether to show the plot in latex format or not +- *valid_solutions(weak: bool = True)*: This method is used to get the rate of valid solutions obtained in all the runs. The parameters are: + - weak: bool, i.e. whether to consider in the evaluation the weak constraints +- *p_range(ref_value: float | None = None)*: This method is used to get the p-range of the best solution obtained in all the runs, which is the probability of obtaining a final energy lower than a certain value. The parameters are: + - ref_value: float | None, i.e. the reference value to calculate the p-value +- *tts(ref_value: float | None = None, target_probability: float = 0.99)*: This method is used to get the time-to-solution of the best solution obtained in all the runs, which is the time required to obtain a solution with a certain probability. The parameters are: + - ref_value: float | None, i.e. the reference value to calculate the p-range + - target_probability: float, i.e. the target probability to calculate the time-to-solution +-*wring_json_reports(filename: str = "report", weak: bool = False, ref_value: float | None = None, target_probability: float = 0.99, problem_features: bool = False)* : This method is used to write the reports in json format. The parameters are: + - filename: str, i.e. the name of the file where the report will be saved + - weak: bool, i.e. whether to consider in the evaluation the weak constraints + - ref_value: float | None, i.e. the reference value to calculate the p-range + - target_probability: float, i.e. the target probability to calculate the time-to-solution + - problem_features: bool, i.e. whether to show the problem features in the report or not + + +Examples: +--------- + +.. code-block:: python + + from mqt.qao.constraints import Constraints + from mqt.qao.variables import Variables + from mqt.qao.objectivefunction import ObjectiveFunction + from mqt.qao.problem import Problem + from mqt.qao.solver import Solver + + variables = Variables() + m1 = variables.add_continuous_variables_array("M1", [1, 2], -1, 2, -1, "uniform", "logarithmic 2") + m2 = variables.add_continuous_variables_array("M2", [2, 1], -1, 2, -1, "uniform", "logarithmic 2") + objective_function = ObjectiveFunction() + objective_function.add_objective_function(np.matmul(m1, m2).item(0, 0)) + constraint = Constraints() + constraint.add_constraint(constraint_expr, variable_precision=True) + problem = Problem() + problem.create_problem(variables, constraint, objective_function) + solver = Solver() + solution = solver.solve_simulated_annealing( + problem, max_lambda_update=max_lambda_update, lambda_update_mechanism=lambda_update, lambda_strategy=lambda_strategy + ) + + print(solution.optimal_solution_cost_functions_values()) + print(solution.check_constraint_optimal_solution()) + print(solution.check_constraint_all_solutions()) + solution.show_cumulative() + print(solution.valid_solutions()) + print(solution.p_range()) + print(solution.tts()) + solution.wring_json_reports() diff --git a/docs/Solver.rst b/docs/Solver.rst index bb5add4..91e0d2a 100644 --- a/docs/Solver.rst +++ b/docs/Solver.rst @@ -19,7 +19,7 @@ Solver Selection and Configuration The class provides for exploiting the solver: -- *solve_simulated_annealing( +- solve_simulated_annealing( problem: Problem, auto_setting: bool = False, beta_range: list[float] | None = None, @@ -35,7 +35,7 @@ The class provides for exploiting the solver: lambda_strategy: str = "upper lower bound posiform and negaform method", lambda_value: float = 1.0, save_time: bool = False, - )* : Solve the problem using the simulated annealer. The parameters are: + ) : Solve the problem using the simulated annealer. The parameters are: - *problem*: the problem to solve - *auto_setting*: if True, the parameters are automatically set - *beta_range*: the range of beta values to use @@ -51,4 +51,264 @@ The class provides for exploiting the solver: - *sequential penalty increase* - *scaled sequential penalty increase* - *binary search penalty algorithm* +- solve_dwave_quantum_annealer( + problem: Problem, + token: str, + auto_setting: bool = False, + failover: bool = True, + config_file: str | None = None, + endpoint: str | None = None, + solver: dict[str, str] | str = "Advantage_system4.1", + annealing_time_scheduling: float | list[list[float]] = 20.0, + num_reads: int = 100, + auto_scale: bool = True, + flux_drift_compensation: bool = True, + initial_state: dict[str, int] | None = None, + programming_thermalization: float = 1000.0, + readout_thermalization: float = 0.0, + reduce_intersample_correlation: bool = True, + max_lambda_update: int = 5, + lambda_update_mechanism: str = "sequential penalty increase", + lambda_strategy: str = "upper lower bound posiform and negaform method", + lambda_value: float = 1.0, + save_time: bool = False, + save_compilation_time: bool = False, + ) : Solve the problem using the D-Wave quantum annealer. The parameters are: + - *problem*: the problem to solve + - *token*: the token to access the D-Wave API + - *auto_setting*: if True, the parameters are automatically set + - *failover*: if True, the failover is enabled + - *config_file*: the configuration file + - *endpoint*: the endpoint + - *solver*: the solver to use + - *annealing_time_scheduling*: the annealing time scheduling + - *num_reads*: the number of reads + - *auto_scale*: if True, the problem is automatically scaled + - *flux_drift_compensation*: if True, the flux drift compensation is enabled + - *initial_state*: the initial state + - *programming_thermalization*: the programming thermalization + - *readout_thermalization*: the readout thermalization + - *reduce_intersample_correlation*: if True, the intersample correlation is reduced + - *max_lambda_update*: the maximum lambda update if the constraints are not satisfied + - *lambda_update_mechanism*: the lambda update mechanism among: + - *sequential penalty increase* + - *scaled sequential penalty increase* + - *binary search penalty algorithm* +- solve_grover_adaptive_search_qubo( + problem: Problem, + auto_setting: bool = False, + qubit_values: int = 0, + coeff_precision: float = 1.0, + threshold: int = 10, + num_runs: int = 10, + max_lambda_update: int = 5, + boundaries_estimation_method: str = "", + lambda_update_mechanism: str = "sequential penalty increase", + lambda_strategy: str = "upper lower bound posiform and negaform method", + lambda_value: float = 1.0, + save_time: bool = False, + save_compilation_time: bool = False, + ) : Solve the problem using the Grover Adaptive Search. The parameters are: + - *problem*: the problem to solve + - *auto_setting*: if True, the parameters are automatically set + - *qubit_values*: the number of qubit values, if the user want to specify it manually + - *coeff_precision*: the coefficient precision + - *threshold*: the threshold + - *num_runs*: the number of runs + - *max_lambda_update*: the maximum lambda update if the constraints are not satisfied + - *boundaries_estimation_method*: the boundaries estimation method for estimating the necessary number of qubit value + - *lambda_update_mechanism*: the lambda update mechanism among: + - *sequential penalty increase* + - *scaled sequential penalty increase* + - *binary search penalty algorithm* +- solve_qaoa_qubo( + problem: Problem, + auto_setting: bool = False, + num_runs: int = 10, + optimizer: Optimizer | None = None, + reps: int = 1, + initial_state: QuantumCircuit | None = None, + mixer: QuantumCircuit = None, + initial_point: np.ndarray[Any, Any] | None = None, + aggregation: float | Callable[[list[float]], float] | None = None, + callback: Callable[[int, np.ndarray[Any, Any], float, float], None] | None = None, + max_lambda_update: int = 5, + lambda_update_mechanism: str = "sequential penalty increase", + lambda_strategy: str = "upper lower bound posiform and negaform method", + lambda_value: float = 1.0, + save_time: bool = False, + save_compilation_time: bool = False, + ) : Solve the problem using the Quantum Approximate Optimization Algorithm. The parameters are: + - *problem*: the problem to solve + - *auto_setting*: if True, the parameters are automatically set + - *num_runs*: the number of runs + - *optimizer*: the optimizer + - *reps*: the number of repetitions + - *initial_state*: the initial state + - *mixer*: the mixer + - *initial_point*: the initial point + - *aggregation*: the aggregation function + - *callback*: the callback function + - *max_lambda_update*: the maximum lambda update if the constraints are not satisfied + - *lambda_update_mechanism*: the lambda update mechanism among: + - *sequential penalty increase* + - *scaled sequential penalty increase* + - *binary search penalty algorithm* +- solve_vqe_qubo( + self, + problem: Problem, + auto_setting: bool = False, + num_runs: int = 10, + optimizer: Optimizer | None = None, + ansatz: QuantumCircuit | None = None, + initial_point: np.ndarray[Any, Any] | None = None, + aggregation: float | Callable[[list[float]], float] | None = None, + callback: Callable[[int, np.ndarray[Any, Any], float, float], None] | None = None, + max_lambda_update: int = 5, + lambda_update_mechanism: str = "sequential penalty increase", + lambda_strategy: str = "upper lower bound posiform and negaform method", + lambda_value: float = 1.0, + save_time: bool = False, + save_compilation_time: bool = False, + ) : Solve the problem using the Variational Quantum Eigensolver. The parameters are: + - *problem*: the problem to solve + - *auto_setting*: if True, the parameters are automatically set + - *num_runs*: the number of runs + - *optimizer*: the optimizer + - *ansatz*: the ansatz + - *initial_point*: the initial point + - *aggregation*: the aggregation function + - *callback*: the callback function + - *max_lambda_update*: the maximum lambda update if the constraints are not satisfied + - *lambda_update_mechanism*: the lambda update mechanism among: + - *sequential penalty increase* + - *scaled sequential penalty increase* + - *binary search penalty algorithm* + +For each of them, the outcome is a Solution object. + + +Examples: +--------- + +Simulated Annealing +~~~~~~~~~~~~~~~~~~~ +.. code-block:: python + + from mqt.qao.constraints import Constraints + from mqt.qao.variables import Variables + from mqt.qao.objectivefunction import ObjectiveFunction + from mqt.qao.problem import Problem + from mqt.qao.solver import Solver + + variables = Variables() + m1 = variables.add_continuous_variables_array("M1", [1, 2], -1, 2, -1, "uniform", "logarithmic 2") + m2 = variables.add_continuous_variables_array("M2", [2, 1], -1, 2, -1, "uniform", "logarithmic 2") + objective_function = ObjectiveFunction() + objective_function.add_objective_function(np.matmul(m1, m2).item(0, 0)) + constraint = Constraints() + constraint.add_constraint(constraint_expr, variable_precision=True) + problem = Problem() + problem.create_problem(variables, constraint, objective_function) + solver = Solver() + solution = solver.solve_simulated_annealing( + problem, max_lambda_update=max_lambda_update, lambda_update_mechanism=lambda_update, lambda_strategy=lambda_strategy + ) + +Quantum Annealing +~~~~~~~~~~~~~~~~~~~ +.. code-block:: python + + from mqt.qao.constraints import Constraints + from mqt.qao.variables import Variables + from mqt.qao.objectivefunction import ObjectiveFunction + from mqt.qao.problem import Problem + from mqt.qao.solver import Solver + + variables = Variables() + m1 = variables.add_continuous_variables_array("M1", [1, 2], -1, 2, -1, "uniform", "logarithmic 2") + m2 = variables.add_continuous_variables_array("M2", [2, 1], -1, 2, -1, "uniform", "logarithmic 2") + objective_function = ObjectiveFunction() + objective_function.add_objective_function(np.matmul(m1, m2).item(0, 0)) + constraint = Constraints() + constraint.add_constraint(constraint_expr, variable_precision=True) + problem = Problem() + problem.create_problem(variables, constraint, objective_function) + solver = Solver() + solution = solver.solve_dwave_quantum_annealer( + token, problem, max_lambda_update=max_lambda_update, lambda_update_mechanism=lambda_update, lambda_strategy=lambda_strategy + ) + + +Grover Adaptive Search +~~~~~~~~~~~~~~~~~~~~~~ +.. code-block:: python + + from mqt.qao.constraints import Constraints + from mqt.qao.variables import Variables + from mqt.qao.objectivefunction import ObjectiveFunction + from mqt.qao.problem import Problem + from mqt.qao.solver import Solver + + variables = Variables() + constraint = Constraints() + a0 = variables.add_binary_variable("a") + b0 = variables.add_binary_variable("b") + c0 = variables.add_binary_variable("c") + cost_function = cast(Expr, -a0 + 2 * b0 - 3 * c0 - 2 * a0 * c0 - 1 * b0 * c0) + objective_function = ObjectiveFunction() + objective_function.add_objective_function(cost_function) + problem = Problem() + problem.create_problem(variables, constraint, objective_function) + solver = Solver() + solution = solver.solve_grover_adaptive_search_qubo(problem, qubit_values=6, num_runs=10) + + + +Quantum Approximate Optimization Algorithm +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ +.. code-block:: python + + from mqt.qao.constraints import Constraints + from mqt.qao.variables import Variables + from mqt.qao.objectivefunction import ObjectiveFunction + from mqt.qao.problem import Problem + from mqt.qao.solver import Solver + + variables = Variables() + constraint = Constraints() + a0 = variables.add_binary_variable("a") + b0 = variables.add_binary_variable("b") + c0 = variables.add_binary_variable("c") + cost_function = cast(Expr, -a0 + 2 * b0 - 3 * c0 - 2 * a0 * c0 - 1 * b0 * c0) + objective_function = ObjectiveFunction() + objective_function.add_objective_function(cost_function) + problem = Problem() + problem.create_problem(variables, constraint, objective_function) + solver = Solver() + solution = solver.solve_qaoa_qubo( + problem, + num_runs=10, + ) + + +Variational Quantum Eigensolver +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ +.. code-block:: python + + variables = Variables() + constraint = Constraints() + a0 = variables.add_binary_variable("a") + b0 = variables.add_binary_variable("b") + c0 = variables.add_binary_variable("c") + cost_function = cast(Expr, -a0 + 2 * b0 - 3 * c0 - 2 * a0 * c0 - 1 * b0 * c0) + objective_function = ObjectiveFunction() + objective_function.add_objective_function(cost_function) + problem = Problem() + problem.create_problem(variables, constraint, objective_function) + solver = Solver() + solution = solver.solve_vqe_qubo( + problem, + num_runs=10, + ) diff --git a/docs/Variable.rst b/docs/Variable.rst index fccd7e0..4c401d4 100644 --- a/docs/Variable.rst +++ b/docs/Variable.rst @@ -68,8 +68,8 @@ The class provides methods to declare variables: - *bounded coefficient _bound_*, where _bound_ is the maximum coefficient that can be used in the encoding. - *shape*: list of integers representing the shape of the array -Examples: - +Example: +-------- .. code-block:: python from mqt.qao.variables import Variables