-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathassigntoclosest.m
executable file
·38 lines (37 loc) · 1.5 KB
/
assigntoclosest.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
% efficient nearest-neighbors in dot product space (where 'nearest' means
% maximizing the dot product). If nonrm is set to 1, it is standard dot product;
% otherwise, each datapoint is unit-normalized before computing the dot product.
% each row of toassign is assigned to the nearest row in targets.
% closest(i) is the row-index in targets of the closest element
% for toassign(i,:). outdist(i) is the distance to that point.
function [closest,outdist]=assigntoclosest(toassign,targets,nonrm)
global ds;
if(isempty(targets))
closest=[];
outdist=[];
return;
end
targsq=targets.^2;%sum(targets.^2,2);
closest=zeros(size(toassign,1),1);
outdist=zeros(size(toassign,1),1);
for(i=1:800:size(toassign,1))
inds=i:min(i+800-1,size(toassign,1));
batch=toassign(inds,:);
batchsq=sum(batch.^2,2);
inprod=targets*(batch');
if(dsbool(ds.conf,'whiteningv2')||(exist('nonrm','var')&&nonrm))
dist=inprod;
[outdist(inds),closest(inds)]=max(dist,[],1);
else
%dist=bsxfun(@plus,bsxfun(@minus,batchsq',2*inprod),targsq);
normval=sqrt(bsxfun(@rdivide,targsq*(batch'~=0),sum(batch'~=0,1))-bsxfun(@rdivide,(targets*(batch'~=0)).^2,sum(batch'~=0,1).^2));
%normval=sqrt(targsq*(batch'~=0)-bsxfun(@rdivide,(targets*(batch'~=0)).^2,sum(batch'~=0,1)));
normval(normval==0)=1;
dist=(-bsxfun(@rdivide,inprod,sum(batch'~=0,1))./normval);
%if(any(dist(:))<0)
%keyboard;
%end
[outdist(inds),closest(inds)]=min(dist,[],1);
end
end
end