-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathoptimizecorrespwrap.m
67 lines (65 loc) · 2.14 KB
/
optimizecorrespwrap.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
% Optimize the correspondence datastructure given in corresp. hogim is the
% query image feature vector (precomputed in contextpredict); pyrs
% is the same as in contextpredict; nrounds is the maximum number of individual cell
% updates that may be performed; confidence is the probability that
% each cell is part of the thing (c from the paper), conf specifies
% lambda and lambdaprime.
%
% transf contains the computed alpha's (local affine transformations) for
% debugging purposes.
%
% Internally, this just precomputes some convenience variables and then passes
% the input to the optimizecorresp mex function.
function [corresp,transf]=optimizecorrespwrap(hogim,corresp,pyrs,nrounds,confidence,conf)
try
global ds
if(~exist('conf','var'))
conf=struct();
end
if(~all(size(hogim(1,:,:))==[1 size(corresp)]))
error('hogim and corresp should be same size');
end
correspidx=zeros([size(corresp) numel(pyrs)],'int32');
for(i=1:size(corresp,2))
for(j=1:size(corresp,1))
if(~isempty(corresp{j,i}))
if(size(corresp{j,i}.mu,2)~=size(corresp{j,i}.covar,2))
error('corresp dims dont match');
end
end
end
end
inferred=~cellfun(@isempty,corresp);
if(any(isnan(confidence(inferred))))
error('nans in confidence');
end
if(isfield(conf,'posforinf'))
posforinf=inferred.*conf.posforinf;
else
posforinf=inferred;
end
if(~exist('confidence','var'))
confidence=double(inferred);
end
if(~all(size(confidence(:,:,1))==size(inferred)))
error('confidence must be same size as corresp');
end
if(isfield(conf,'lambda'))
lambda=conf.lambda;
else
lambda=1;
end
if(isfield(conf,'lambdaprime'))
lambdaprime=conf.lambdaprime;
else
lambdaprime=1;
end
clearcache=double(dsbool(conf,'clearcache'))
numneighborspercell=conv2(double(inferred),[0 1 0; 1 0 1; 0 1 0],'same');
[corresp,transf]=optimizecorresp(hogim,corresp,pyrs(:),int32(nrounds),correspidx,inferred,int32(find(posforinf(:))-1),double(confidence),lambda,clearcache,numneighborspercell,lambdaprime);
for(i=1:numel(transf))
transf{i}=permute(transf{i},[3 4 1 2]);
end
catch ex,dsprinterr;
end
end