forked from TUfischl/newdetkdecomp
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDetKDecomp.cpp
830 lines (670 loc) · 23.6 KB
/
DetKDecomp.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
// DetKDecomp.cpp: implementation of the DetKDecomp class.
//
//////////////////////////////////////////////////////////////////////
#include <cstdio>
#include <iostream>
#include <cmath>
#include <algorithm>
#include <list>
#include <vector>
using namespace std;
#include "DetKDecomp.h"
#include "Hypertree.h"
#include "Hypergraph.h"
#include "Hyperedge.h"
#include "Vertex.h"
#include "Globals.h"
#include "Subedges.h"
#include "SubedgeSeparatorFactory.h"
#include "DecompComponent.h"
//////////////////////////////////////////////////////////////////////
// Construction/Destruction
//////////////////////////////////////////////////////////////////////
DetKDecomp::DetKDecomp(const HypergraphSharedPtr &HGraph, int k, bool bip) : Decomp(HGraph, k), MyBIP{ bip }
{
if (MyBIP)
MySubedges = make_unique<Subedges>(HGraph, k);
}
DetKDecomp::~DetKDecomp()
{
}
//////////////////////////////////////////////////////////////////////
// Class methods
//////////////////////////////////////////////////////////////////////
/*
***Description***
The method selects an initial subset within a set of hyperedges such that a given set of
nodes is covered.
INPUT: Vertices: Array of nodes to be covered
Edges: Array of hyperedges
bInComp: Boolean array indicating the position of each hyperedge
iSize: Number of elements in Edges, bInComp, and CovWeights
OUTPUT: Set: Selection of hyperedges in Edges such that all nodes in Nodes are covered
CovWeights: Array with the number of connector nodes covered by each hyperedge
return: Number of selected hyperedges; -1 if nodes cannot be covered
*/
int DetKDecomp::setInitSubset(const VertexSet &Vertices, HyperedgeVector &Edges, vector<int> &Set, vector<bool> &InComp, vector<int> &CovWeights) const
{
int uncov{ (int)Vertices.size() };
int weight, e;
// Reset node labels
MyHg->setVertexLabels(-1);
for(auto v : Vertices)
v->setLabel(0);
// Sort hyperedges according to their weight,
// i.e., the number of nodes in Vertices they contain
e = 0;
for(auto he : Edges) {
he->setLabel((int)InComp[e]); //c implicit: incomp must be of equal size to edges
CovWeights[e] = 0;
for(auto v : he->allVertices())
if(v->getLabel() == 0)
--CovWeights[e];
e++;
}
sortVectors<HyperedgeSharedPtr>(Edges, CovWeights, 0, (int)Edges.size()-1);
// Reset bInComp and summarize weights
for(int i=0; i < (int)Edges.size(); i++) {
Edges[i]->getLabel() == 0 ? InComp[i] = false : InComp[i] = true; //c frei nach dem Motto: Doppelt hält besser?
CovWeights[i] = -CovWeights[i]; //c damit die covweights positiv sind? Ordnung wird erhalten
}
weight = 0;
for(int i=(int)Edges.size()-1; i >= 0; i--) {
weight += CovWeights[i];
CovWeights[i] = weight;
}
// Select an initial subset of at most iMyK hyperedges
return coverNodes(Edges, Set, InComp, CovWeights, uncov, false);
}
/*
***Description***
The method selects the next subset within a set of hyperedges such that a given set of
nodes is covered.
INPUT: Nodes: Array of nodes to be covered
Edges: Array of hyperedges
Set: Integer array of indices in Edges representing a subset selection
bInComp: Boolean array indicating the position of each hyperedge
CovWeights: Array with the number of connector nodes covered by each hyperedge
iSize: Number of elements in Edges, bInComp, and CovWeights
OUTPUT: Set: Selection of hyperedges in Edges such that all nodes in Nodes are covered
return: Number of selected hyperedges; -1 if there is no alternative selection
*/
int DetKDecomp::setNextSubset(const VertexSet &Vertices, HyperedgeVector &Edges, vector<int> &Set, vector<bool> &InComp, vector<int> &CovWeights) const
{
MyHg->setVertexLabels(-1);
for(auto v : Vertices)
v->setLabel(0);
// Select the next subset of at most iMyK hyperedges
return coverNodes(Edges, Set, InComp, CovWeights, Vertices.size(), true);
}
int DetKDecomp::coverNodes(HyperedgeVector &Edges, vector<int> &Set, vector<bool> &InComp, vector<int> &CovWeights, size_t Uncovered, bool Reconstr) const
{
int i;
int pos, nbr_sel, in_comp_sel, weight;
int size{ (int)Edges.size() };
bool covered, back, select;
list<vector<int>> label_stack;
list<int *>::iterator ListIter;
vector<int> tmp_labels;
pos = nbr_sel = in_comp_sel = 0;
Uncovered == 0 ? covered = true : covered = false;
// Reconstruct the search tree according to Set
if (Reconstr) {
if (Set[0] == -1) return -1;
for (nbr_sel = 0; Set[nbr_sel + 1] != -1; nbr_sel++) {
pos = Set[nbr_sel];
if (InComp[pos])
++in_comp_sel;
tmp_labels.clear();
tmp_labels.resize(Edges[pos]->getNbrOfVertices());
//if(iTmpLabels == NULL)
// writeErrorMsg("Error assigning memory.", "DetKDecomp::coverNodes");
// Save labels of nodes in the actual hyperedge and label these nodes by 1
i = 0;
for (auto v : Edges[pos]->allVertices()) {
tmp_labels[i] = v->getLabel();
v->setLabel(1);
i++;
}
label_stack.push_back(tmp_labels);
}
pos = Set[nbr_sel];
Uncovered = 0;
for (auto v : Edges[pos]->allVertices())
if(v->getLabel() == 0)
++Uncovered;
++pos;
}
// Search for a new set of covering hyperedges
while(!covered) {
for(back=false; !covered; pos++) {
// Check if nodes can be covered by the remaining hyperedges;
// prune the search tree if not
i = pos + (MyK-nbr_sel);
if(i < size)
weight = CovWeights[pos] - CovWeights[i];
else
if(pos < size)
weight = CovWeights[pos];
else
weight = 0;
if((weight < Uncovered) || (weight == 0)) {
back = true;
break;
}
// Check if the actual hyperedge covers some uncovered node
select = false;
if(InComp[pos] || (in_comp_sel > 0) || (nbr_sel < MyK-1))
for(auto v : Edges[pos]->allVertices())
if(v->getLabel() == 0) {
select = true;
break;
}
if (select) {
// Select the actual hyperedge
Set[nbr_sel++] = pos;
if (InComp[pos])
++in_comp_sel;
tmp_labels.clear();
tmp_labels.resize(Edges[pos]->getNbrOfVertices());
//iTmpLabels = new int[Edges[iPos]->getNbrOfNodes()];
//if(iTmpLabels == NULL)
// writeErrorMsg("Error assigning memory.", "DetKDecomp::coverNodes");
// Save labels of nodes in the actual hyperedge and label these nodes by 1
i = 0;
for (auto v : Edges[pos]->allVertices()) {
tmp_labels[i] = v->getLabel();
v->setLabel(1);
if(tmp_labels[i] == 0)
--Uncovered;
i++;
}
label_stack.push_back(tmp_labels);
// Check whether all nodes are covered
if(Uncovered == 0)
covered = true;
}
}
if(back) {
if(nbr_sel == 0) {
// No more possibilities to cover the nodes
nbr_sel = -1;
break;
}
else {
// Undo the last selection if the nodes cannot be covered in this way
pos = Set[--nbr_sel];
if (InComp[pos])
--in_comp_sel;
tmp_labels = label_stack.back();
label_stack.pop_back();
i = 0;
for (auto v : Edges[pos]->allVertices()) {
v->setLabel(tmp_labels[i]);
if(tmp_labels[i] == 0)
++Uncovered;
i++;
}
//delete [] iTmpLabels;
++pos;
}
}
}
if(nbr_sel >= 0)
Set[nbr_sel] = -1;
//for(ListIter=LabelStack.begin(); ListIter != LabelStack.end(); ListIter++)
// delete [] *ListIter;
return nbr_sel;
}
/*
***Description***
The method divides a given set of hyperedges into inner hyperedges and its boundary according
to a given set of boundary nodes. The inner hyperedges are those not containing a boundary node.
All other hyperedges containing a boundary node (within the given set or outside) belong to
the boundary hyperedges.
INPUT: HEdges: Hyperedges
Nodes: Boundary nodes
OUTPUT: Inner: Inner hyperedges not containing a boundary node
Bound: Boundary hyperedges containing a boundary node
return: Index in Bound that separates boundary hyperedges within and outside the given
set of hyperedges; all hyperedges before this index are inside the given set and all
hyperedges starting at this index are outside the given set.
*/
size_t DetKDecomp::divideCompEdges(const HyperedgeVector &HEdges, const VertexSet &Vertices, HyperedgeVector &Inner, HyperedgeVector &Bound) const
{
bool covered;
size_t cnt_edges{ HEdges.size() };
list<HyperedgeSharedPtr> innerb, outerb;
unordered_map<HyperedgeSharedPtr, int> edgeLabels;
unordered_map<VertexSharedPtr, int> vertexLabels;
for (auto he : HEdges)
edgeLabels[he] = 1;
// Compute the hyperedges containing a boundary node and store them
// in InnerB if they are contained in the given set and in OuterB otherwise
for(auto v : Vertices)
for(auto he : MyHg->allVertexNeighbors(v)) {
// Only use normal edges for separators
if (!he->isHeavy()) {
switch (edgeLabels[he]) {
case 0: // Hyperedge is not contained in HEdges
edgeLabels[he] = -1;
outerb.push_back(he);
break;
case 1: // Hyperedge is contained in HEdges
edgeLabels[he] = -1;
innerb.push_back(he);
break;
}
}
}
// Store hyperedges not containing a boundary node in the array
for (auto he : HEdges)
if (edgeLabels[he] > 0)
Inner.push_back(he);
edgeLabels.clear();
for(auto he : outerb)
edgeLabels[he] = 1;
// Remove redundant hyperedges from OuterB; such a hyperedge is redundant if the set of its
// boundary nodes is covered by some other hyperedge in OuterB
for(auto it=outerb.begin(); it != outerb.end(); it++) {
// Label all boundary nodes by 1
for (auto v : Vertices)
vertexLabels[v] = (1);
// Reset the labels of all nodes of the actual hyperedge in OuterB
for(auto v : (*it)->allVertices())
vertexLabels[v] = 0;
// Check whether some hyperedge in OuterB in the neighbourhood of the actual hyperedge
// contains no node labeled with 1; in this case it can be removed from OuterB since its
// boundery nodes are covered by the actual hyperedge in OuterB
for(auto he : MyHg->allEdgeNeighbors(*it))
if(edgeLabels[he] != 0) {
covered = true;
for(auto v : he->allVertices())
if (vertexLabels[v] != 0) {
covered = false;
break;
}
if(covered)
outerb.remove(he);
}
}
// Store hyperedges containing a boundary node in the array
for(auto he : innerb)
Bound.push_back(he);
for(auto he : outerb)
Bound.push_back(he);
return innerb.size();
}
CompCache & DetKDecomp::getSepParts(SeparatorSharedPtr & sep) const
{
for (auto t : MyTriedSeps)
if (t.first == sep) {
sep = t.first;
break;
}
return MyTriedSeps[sep];
}
/*
***Description***
The method checks whether the actual separator occurs in the MySeps list of already
used separators. If so, the method returns two lists of hyperedges identifiying the
decomposable and undecomposable partitions. It is assumed that separator hyperedges
are labeled by -1 and no other hyperedges are labeled by -1.
INPUT: iSepSize: Size of the actual separator
OUTPUT: Separator: Stored separator
SuccParts: List of decomposable partitions
FailParts: List of undecomposable partitions
return: true if separator was found; otherwise false
*/
/*
bool DetKDecomp::getSepParts(int SepSize, HE_VEC **Separator, list<Hyperedge *> **SuccParts, list<Hyperedge *> **FailParts)
{
int i;
bool found = false;
list<list<Hyperedge *> *>::iterator SuccPartIter, FailPartIter;
// Check whether the actual separator is known to be decomposable or undecomposable
SuccPartIter = MySuccSepParts.begin();
FailPartIter = MyFailSepParts.begin();
for(auto sep : MySeps) {
found = true;
i = 0;
for (auto he : *sep) {
if (he->getLabel() != -1) {
found = false;
break;
}
i++;
}
if(found && (i == SepSize)) {
*Separator = sep;
*SuccParts = *SuccPartIter;
*FailParts = *FailPartIter;
return true;
}
++SuccPartIter;
++FailPartIter;
}
return false;
}
*/
/*
***Description***
The method searches in a list of hyperedges for an edge with a given label.
INPUT: HEdges: Pointer to a list of hyperedges
iLabel: Label
OUTPUT: return: true if there exists an edge in HEdges labeled by iLabel; otherwise false
*/
bool DetKDecomp::containsLabel(list<Hyperedge *> *HEdges, int iLabel)
{
list<Hyperedge *>::iterator ListIter;
// Search for a hyperedge labeled by iLabel
for(ListIter=HEdges->begin(); ListIter != HEdges->end(); ListIter++)
if((*ListIter)->getLabel() == iLabel)
return true;
return false;
}
/*
***Description***
The method decomposes the hyperedges in a subhypergraph as described in Gottlob and
Samer: A Backtracking-Based Algorithm for Computing Hypertree-Decompositions.
INPUT: HEdges: Hyperedges in the subgraph
Connector: Connector nodes that must be covered
iRecLevel: Recursion level
OUTPUT: return: Hypertree decomposition of HEdges
*/
bool DetKDecomp::covers(const HyperedgeVector &Edges, const VertexSet &Vertices) const
{
bool found;
for (auto v : Vertices) {
found = false;
for (auto e : Edges) {
if (e->find(v) != nullptr) {
found = true;
break;
}
}
if (!found)
return false;
}
return true;
}
HypertreeSharedPtr DetKDecomp::decomp(const HyperedgeVector &HEdges, const VertexSet &Connector, int RecLevel) const
{
int i, j;
list<Hypertree *>::iterator TreeIter;
SeparatorSharedPtr separator{ nullptr };
vector<int> cov_sep_set, cov_weights;
vector<bool> in_comp;
size_t cnt_edges{ HEdges.size() };
int comp_end, nbr_sel_cov, i_add, sep_size;
size_t nbr_of_parts;
bool add_edge, fail_sep, sub_edge;
HypertreeSharedPtr htree{ nullptr };
HyperedgeVector inner_edges, bound_edges, add_edges;
//c output Hedges
for (int k = 0; k <= RecLevel; k++)
cout << "+";
cout << " Component: " << HEdges
<< " Connector: " << Connector << endl;
if ((htree = decompTrivial(HEdges, Connector)) != nullptr)
return htree;
// Divide hyperedges into inner hyperedges and hyperedges containing some connecting nodes
comp_end = (int)divideCompEdges(HEdges, Connector, inner_edges, bound_edges);
in_comp.resize(bound_edges.size());
cov_weights.resize(bound_edges.size(),0);
cov_sep_set.resize(MyK+1);
for(i=0; i < bound_edges.size(); i++)
i < comp_end ? in_comp[i] = true : in_comp[i] = false;
// Select initial hyperedges to cover the connecting nodes
nbr_sel_cov = setInitSubset(Connector, bound_edges, cov_sep_set, in_comp, cov_weights);
// Initialize AddEdges array
for (i = 0; i < bound_edges.size(); i++)
if (in_comp[i])
if (!bound_edges[i]->isHeavy())
add_edges.push_back(bound_edges[i]);
for (i = 0; i < inner_edges.size(); i++)
if (!inner_edges[i]->isHeavy())
add_edges.push_back(inner_edges[i]);
if(add_edges.size() <= 0)
writeErrorMsg("Illegal number of hyperedges.", "DetKDecomp::decomp");
if(nbr_sel_cov >= 0)
do {
//c output set
cout << "current subset: { ";
for(int i = 0; i < cov_sep_set.size();i++){
cout << cov_sep_set[i];
i == (cov_sep_set.size() - 1) ? cout << " }"<< endl : cout << ", ";
}
//c output set
if (in_comp.size() > 0){
cout << "current incomp: { ";
for(int i = 0; i < in_comp.size();i++){
cout << in_comp[i];
i == (in_comp.size() - 1) ? cout << " }"<< endl : cout << ", ";
}
}
//c output set
cout << "current inner: ";
cout << inner_edges<< endl;
cout << "current bound: " ;
cout << bound_edges << endl;
cout << "nbr_sel_cov: ";
cout << nbr_sel_cov << endl;
// Check whether a covering hyperedge within the component was selected
add_edge = true;
for(i=0; i < nbr_sel_cov; i++)
if(in_comp[cov_sep_set[i]]) {
add_edge = false;
break;
}
// Stop if no inner hyperedge can be in the separator
if(!add_edge || (MyK-nbr_sel_cov > 0)) {
i_add = 0;
add_edge ? sep_size = nbr_sel_cov+1 : sep_size = nbr_sel_cov;
do {
sub_edge = false;
// Output the search progress
cout << "( RecLevel:" << RecLevel << ")" << endl;
cout << "( sep_size" << sep_size << ")" << endl;
// Create a separator
separator = make_shared<Separator>();
for(i=0; i < nbr_sel_cov; i++)
separator->insert(bound_edges[cov_sep_set[i]]);
if (add_edge)
separator->insert(add_edges[i_add]);
cout << "Seperator: " << separator->edges() << endl;
SubedgeSeparatorFactory sub_sep_fac;
do {
// Check if selected hyperedges were already used before as separator
auto &reused = getSepParts(separator);
/*
if (!reused_sep) {
// Create a separator array and lists for decomposable and undecomposable parts
// keep sub_separator if built from a subedge separator
if (sub_edge) {
separator = sub_separator;
}
else {
separator = new HE_VEC(sep_size, nullptr);
if (separator == nullptr)
writeErrorMsg("Error assigning memory.", "DetKDecomp::decomp");
// Store separating hyperedges in the separator array
for (i = 0; i < nbr_sel_cov; i++)
(*separator)[i] = bound_edges[cov_sep_set[i]];
if (add_edge)
(*separator)[i++] = add_edges[i_add];
}
succ_parts = new list<Hyperedge *>;
fail_parts = new list<Hyperedge *>;
if ((succ_parts == nullptr) || (fail_parts == nullptr))
writeErrorMsg("Error assigning memory.", "DetKDecomp::decomp");
//Separator[i] = NULL;
MySeps.push_back(separator);
MySuccSepParts.push_back(succ_parts);
MyFailSepParts.push_back(fail_parts);
}
else
if (sub_edge)
delete sub_separator;
//Debugging output
/*
cout << "+++ Separator: ";
for (int i = 0; i < separator->size(); i++) {
cout << (*separator)[i]->getName();
if (i < separator->size()-1)
cout << ",";
}
cout << endl;
*/
vector<DecompComponent> partitions;
vector<bool> cut_parts;
list<HypertreeSharedPtr> Subtrees;
// Separate hyperedges into partitions with corresponding connector nodes
nbr_of_parts = separate(separator, HEdges, partitions);
cout << "nbr of parts: " << nbr_of_parts << endl;
// Output partitions
for(auto p : partitions)
cout << "comp: " << p.component() << " conn: " << p.connector() << endl;
// Create auxiliary array
cut_parts.clear();
cut_parts.resize(nbr_of_parts);
// Check partitions for decomposibility and undecomposibility
fail_sep = false;
for (i = 0; i < partitions.size(); i++) {
if (partitions[i].size() >= cnt_edges) {
//writeErrorMsg("Monotonicity violated.", "DetKDecomp::decomp");
fail_sep = true;
reused.failed.push_back(partitions[i].first());
break;
}
// Check for undecomposability
if (partitions[i].containsOneOf(reused.failed)) {
fail_sep = true;
break;
}
// Check for decomposibility
if (partitions[i].containsOneOf(reused.succ))
cut_parts[i] = true;
else
cut_parts[i] = false;
}
if (!fail_sep) {
// Decompose partitions into hypertrees
for (i = 0; i < partitions.size(); i++) {
if (cut_parts[i]) {
// Prune subtree
htree = getCutNode(RecLevel + 1, partitions[i]);
}
else {
// Decompose component recursively
htree = decomp(partitions[i], RecLevel + 1);
if (htree == nullptr)
reused.failed.push_back(partitions[i][0]);
else
reused.succ.push_back(partitions[i][0]);
}
if (htree != nullptr)
Subtrees.push_back(htree);
else break;
}
//Either all components decomposed or some component failed
if (htree != nullptr) {
// Create a new hypertree node
if (sub_edge) {
for (auto he : *separator)
he->setLabel(-1);
}
else {
for (i = 0; i < nbr_sel_cov; i++) {
j = cov_sep_set[i];
in_comp[j] ? bound_edges[j]->setLabel(-1) : bound_edges[j]->setLabel(0);
}
if (add_edge)
add_edges[i_add]->setLabel(-1);
}
htree = getHTNode(HEdges, separator, Connector, Subtrees);
// Output considered ht node
cout << "produced ht node with Lambda: " << htree->getLambda()
<< " and Chi: " << htree->getChi() << endl;
}
}
//c In LocalBipK: First try finding a Hypertree normally, then include subedges and continue searching
if (MyBIP && htree == nullptr) {
//Start sub_edge procedure
if (!sub_edge) {
sub_edge = true;
sub_sep_fac.init(MyHg, HEdges, separator, MySubedges);
}
bool found = false;
while (!found && (separator = sub_sep_fac.next())->size() != 0) {
found = true;
//Check if new sub_separator still covers all connector nodes
if (!covers(separator, Connector))
found = false;
}
// All subedge separators tried
if (separator->size() == 0) //c all seperators with subedges have been tried
sub_edge = false;
}
} while (MyBIP && sub_edge && htree == nullptr);
} while(add_edge && (htree == nullptr) && (++i_add < add_edges.size()));
}
} while((htree == nullptr) && ((nbr_sel_cov = setNextSubset(Connector, bound_edges, cov_sep_set, in_comp, cov_weights)) > 0));
return htree;
}
/*
***Description***
The method expands pruned hypertree nodes, i.e., subgraphs which were not decomposed but are
known to be decomposable are decomposed.
INPUT: HTree: Hypertree that has to be expanded
OUTPUT: HTree: Expanded hypertree
*/
void DetKDecomp::expandHTree(HypertreeSharedPtr &HTree)
{
HypertreeSharedPtr cut_node, subtree;
while((cut_node = HTree->getCutNode()) != nullptr) {
// Store subgraph in an array
auto &lambda = cut_node->getLambda();
HyperedgeVector edges(lambda.begin(), lambda.end());
// Store connector nodes in an array
auto &chi = cut_node->getChi();
VertexSet connector(chi);
// Reconstruct parent separator
auto parent = cut_node->getParent().lock();
auto &parent_lambda = parent->getLambda();
Separator parent_sep(HyperedgeVector(parent_lambda.begin(),parent_lambda.end()));
// Decompose subgraph
subtree = decomp(edges, connector, cut_node->getLabel());
if(subtree == nullptr)
writeErrorMsg("Illegal decomposition pruning.", "H_DetKDecomp::expandHTree");
// Replace the pruned node by the corresponding subtree
parent->insChild(subtree);
parent->remChild(cut_node);
}
}
/*
***Description***
The method builds a hypertree decomposition of a given hypergraph as described in Gottlob
and Samer: A Backtracking-Based Algorithm for Computing Hypertree-Decompositions.
INPUT: iK: Maximum separator size
OUTPUT: return: Hypertree decomposition of HGraph
*/
HypertreeSharedPtr DetKDecomp::buildHypertree()
{
HypertreeSharedPtr HTree;
HyperedgeVector HEdges;
// Order hyperedges heuristically
HEdges = MyHg->getMCSOrder();
cout << HEdges << endl;
// Store initial heuristic order as weight
//for(int i=0; i < HEdges.size(); i++)
// HEdges[i]->setWeight(i);
// Build hypertree decomposition
HTree = decomp(HEdges);
// Expand pruned hypertree nodes
if((HTree != nullptr) && (HTree->getCutNode() != nullptr)) {
cout << "Expanding hypertree ..." << endl;
expandHTree(HTree);
}
return HTree;
}