-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_check_functions.py
957 lines (804 loc) · 39.8 KB
/
test_check_functions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
import polars as pl
import pandera.polars as pa
from regtech_data_validator import global_data
from regtech_data_validator.check_functions import (
has_correct_length,
has_no_conditional_field_conflict,
has_valid_enum_pair,
has_valid_fieldset_pair,
has_valid_format,
has_valid_multi_field_value_count,
has_valid_value_count,
is_date,
is_greater_than,
is_greater_than_or_equal_to,
is_less_than,
is_number,
is_unique_column,
is_unique_in_field,
is_valid_code,
is_valid_enum,
meets_multi_value_field_restriction,
string_contains,
)
class TestInvalidDateFormat:
valid_date_format = "20231010"
invalid_date_format_1 = "202310101"
invalid_date_format_2 = "20231032"
invalid_date_format_3 = "20231301"
invalid_date_format_4 = "A0001201"
invalid_date_format_5 = "2020121"
invalid_date_format_6 = "2020120A"
def test_with_valid_date(self):
date_data = pa.PolarsData(pl.DataFrame({"date": self.valid_date_format}).lazy(), "date")
results = is_date(date_data).collect()
assert results["check_results"].eq(True).all()
def test_with_invalid_date(self):
date_data = pa.PolarsData(pl.DataFrame({"date": self.invalid_date_format_1}).lazy(), "date")
results = is_date(date_data).collect()
assert results["check_results"].eq(False).all()
def test_with_invalid_day(self):
date_data = pa.PolarsData(pl.DataFrame({"date": self.invalid_date_format_2}).lazy(), "date")
results = is_date(date_data).collect()
assert results["check_results"].eq(False).all()
def test_with_invalid_month(self):
date_data = pa.PolarsData(pl.DataFrame({"date": self.invalid_date_format_3}).lazy(), "date")
results = is_date(date_data).collect()
assert results["check_results"].eq(False).all()
def test_with_invalid_year(self):
date_data = pa.PolarsData(pl.DataFrame({"date": self.invalid_date_format_4}).lazy(), "date")
results = is_date(date_data).collect()
assert results["check_results"].eq(False).all()
def test_with_invalid_format(self):
date_data = pa.PolarsData(pl.DataFrame({"date": self.invalid_date_format_5}).lazy(), "date")
results = is_date(date_data).collect()
print(f"5 results: {results}")
assert results["check_results"].eq(False).all()
def test_with_invalid_type(self):
date_data = pa.PolarsData(pl.DataFrame({"date": self.invalid_date_format_6}).lazy(), "date")
results = is_date(date_data).collect()
assert results["check_results"].eq(False).all()
class TestDuplicatesInField:
def test_with_blank(self):
unique_data = pa.PolarsData(pl.DataFrame({"unique": ""}).lazy(), "unique")
results = is_unique_in_field(unique_data).collect()
assert results["check_results"].eq(True).all()
def test_with_no_duplicates(self):
unique_data = pa.PolarsData(pl.DataFrame({"unique": "1"}).lazy(), "unique")
results = is_unique_in_field(unique_data).collect()
assert results["check_results"].eq(True).all()
unique_data = pa.PolarsData(pl.DataFrame({"unique": "1;2;3;4"}).lazy(), "unique")
results = is_unique_in_field(unique_data).collect()
assert results["check_results"].eq(True).all()
def test_with_duplicates(self):
unique_data = pa.PolarsData(pl.DataFrame({"unique": "1;2;3;3;4"}).lazy(), "unique")
results = is_unique_in_field(unique_data).collect()
assert results["check_results"].eq(False).all()
class TestInvalidNumberOfValues:
def test_with_in_range(self):
count_data = pa.PolarsData(pl.DataFrame({"count": "1;2;"}).lazy(), "count")
results = has_valid_value_count(count_data, 1, 4).collect()
assert results["check_results"].eq(True).all()
def test_with_lower_range_value(self):
count_data = pa.PolarsData(pl.DataFrame({"count": "1"}).lazy(), "count")
results = has_valid_value_count(count_data, 1, 4).collect()
assert results["check_results"].eq(True).all()
def test_with_invalid_lower_range_value(self):
count_data = pa.PolarsData(pl.DataFrame({"count": "1"}).lazy(), "count")
results = has_valid_value_count(count_data, 2, 4).collect()
assert results["check_results"].eq(False).all()
def test_with_upper_range_value(self):
count_data = pa.PolarsData(pl.DataFrame({"count": "1;2"}).lazy(), "count")
results = has_valid_value_count(count_data, 1, 2).collect()
assert results["check_results"].eq(True).all()
def test_with_invalid_upper_range_value(self):
count_data = pa.PolarsData(pl.DataFrame({"count": "1;2;3;4"}).lazy(), "count")
results = has_valid_value_count(count_data, 2, 3).collect()
assert results["check_results"].eq(False).all()
def test_valid_with_no_upper_bound(self):
count_data = pa.PolarsData(pl.DataFrame({"count": "1;2;3;4"}).lazy(), "count")
results = has_valid_value_count(count_data, 1, None).collect()
assert results["check_results"].eq(True).all()
def test_invalid_with_no_upper_bound(self):
count_data = pa.PolarsData(pl.DataFrame({"count": "1"}).lazy(), "count")
results = has_valid_value_count(count_data, 2, None).collect()
assert results["check_results"].eq(False).all()
class TestMultiValueFieldRestriction:
def test_with_invalid_values(self):
assert meets_multi_value_field_restriction("1;2;3", ["2"]) is False
def test_with_valid_length(self):
assert meets_multi_value_field_restriction("2", ["2"]) is True
assert meets_multi_value_field_restriction("1", ["2"]) is True
def test_with_valid_values(self):
assert meets_multi_value_field_restriction("1;2;3", ["4"]) is True
class TestMultiInvalidNumberOfValues:
good_df = pa.PolarsData(pl.DataFrame({"value": "4", "other_value": "999"}).lazy(), "value")
blank_df = pa.PolarsData(pl.DataFrame({"value": "4;1", "other_value": ""}).lazy(), "value")
multiple_values_series = pl.Series(values=["1;2;3"], name="test_name")
multiple_values_series_with_977 = pl.Series(values=["1;2;3;977"], name="test_name")
multiple_values_series_with_blanks = pl.Series(values=["1;2;; ;3"], name="test_name")
def test_inside_maxlength(self):
good_df = pa.PolarsData(pl.DataFrame({"value": "4", "other_value": "999"}).lazy(), "value")
results = has_valid_multi_field_value_count(good_df, max_length=5, related_fields="other_value").collect()
assert results["check_results"].eq(True).all()
def test_on_maxlength(self):
good_df = pa.PolarsData(pl.DataFrame({"value": "4", "other_value": "999"}).lazy(), "value")
results = has_valid_multi_field_value_count(good_df, max_length=2, related_fields="other_value").collect()
assert results["check_results"].eq(True).all()
def test_with_blank(self):
blank_df = pa.PolarsData(pl.DataFrame({"value": "4;1", "other_value": ""}).lazy(), "value")
results = has_valid_multi_field_value_count(blank_df, max_length=2, related_fields="other_value").collect()
assert results["check_results"].eq(True).all()
def test_invalid_length_with_blank(self):
blank_df = pa.PolarsData(pl.DataFrame({"value": "4;1", "other_value": ""}).lazy(), "value")
results = has_valid_multi_field_value_count(blank_df, max_length=1, related_fields="other_value").collect()
assert results["check_results"].eq(False).all()
def test_invalid_length_with_blank_and_ignored_values(self):
blank_df = pa.PolarsData(pl.DataFrame({"value": "4;1;977", "other_value": ""}).lazy(), "value")
results = has_valid_multi_field_value_count(
blank_df, max_length=1, ignored_values={"977"}, related_fields="other_value"
).collect()
assert results["check_results"].eq(False).all()
def test_valid_length_with_blank_and_ignored_values(self):
blank_df = pa.PolarsData(pl.DataFrame({"value": "4;1;977", "other_value": ""}).lazy(), "value")
results = has_valid_multi_field_value_count(
blank_df, max_length=2, ignored_values={"977"}, related_fields="other_value"
).collect()
assert results["check_results"].eq(True).all()
def test_outside_maxlength(self):
max_df = pa.PolarsData(pl.DataFrame({"value": "4", "other_value": "999"}).lazy(), "value")
results = has_valid_multi_field_value_count(max_df, max_length=1, related_fields="other_value").collect()
assert results["check_results"].eq(False).all()
def test_valid_length_with_multi(self):
multi_df = pa.PolarsData(pl.DataFrame({"value": "4;1", "other_value": "1;2;3"}).lazy(), "value")
results = has_valid_multi_field_value_count(multi_df, max_length=5, related_fields="other_value").collect()
assert results["check_results"].eq(True).all()
def test_invalid_length_with_multi(self):
multi_df = pa.PolarsData(pl.DataFrame({"value": "4;1", "other_value": "1;2;3"}).lazy(), "value")
results = has_valid_multi_field_value_count(multi_df, max_length=4, related_fields="other_value").collect()
assert results["check_results"].eq(False).all()
def test_valid_length_with_ignored_values(self):
multi_df = pa.PolarsData(pl.DataFrame({"value": "4;1", "other_value": "1;2;3;977"}).lazy(), "value")
results = has_valid_multi_field_value_count(
multi_df, max_length=5, ignored_values={"977"}, related_fields="other_value"
).collect()
assert results["check_results"].eq(True).all()
multi_df = pa.PolarsData(pl.DataFrame({"value": "4;1;977", "other_value": "1;2;3;977"}).lazy(), "value")
results = has_valid_multi_field_value_count(
multi_df, max_length=5, ignored_values={"977"}, related_fields="other_value"
).collect()
assert results["check_results"].eq(True).all()
def test_invalid_length_with_ignored_values(self):
multi_df = pa.PolarsData(pl.DataFrame({"value": "4;1", "other_value": "1;2;3;977"}).lazy(), "value")
results = has_valid_multi_field_value_count(
multi_df, max_length=4, ignored_values={"977"}, related_fields="other_value"
).collect()
assert results["check_results"].eq(False).all()
multi_df = pa.PolarsData(pl.DataFrame({"value": "4;1;977", "other_value": "1;2;3;977"}).lazy(), "value")
results = has_valid_multi_field_value_count(
multi_df, max_length=4, ignored_values={"977"}, related_fields="other_value"
).collect()
assert results["check_results"].eq(False).all()
def test_valid_length_with_blank_values(self):
has_blank_df = pa.PolarsData(pl.DataFrame({"value": "4;1", "other_value": "1;2;; ;3"}).lazy(), "value")
results = has_valid_multi_field_value_count(has_blank_df, max_length=5, related_fields="other_value").collect()
assert results["check_results"].eq(True).all()
has_blank_df = pa.PolarsData(pl.DataFrame({"value": "4;1;977", "other_value": "1;2;; ;3;977"}).lazy(), "value")
results = has_valid_multi_field_value_count(
has_blank_df, max_length=5, ignored_values={"977"}, related_fields="other_value"
).collect()
assert results["check_results"].eq(True).all()
def test_invalid_length_with_blank_values(self):
has_blank_df = pa.PolarsData(pl.DataFrame({"value": "4;1", "other_value": "1;2;; ;3"}).lazy(), "value")
results = has_valid_multi_field_value_count(has_blank_df, max_length=4, related_fields="other_value").collect()
assert results["check_results"].eq(False).all()
has_blank_df = pa.PolarsData(pl.DataFrame({"value": "4;1;977", "other_value": "1;2;; ;3;977"}).lazy(), "value")
results = has_valid_multi_field_value_count(
has_blank_df, max_length=4, ignored_values={"977"}, related_fields="other_value"
).collect()
assert results["check_results"].eq(False).all()
class TestInvalidEnumValue:
def test_with_valid_enum_values(self):
accepted_values = ["1", "2"]
check_df = pa.PolarsData(pl.DataFrame({"value": "1;2"}).lazy(), "value")
results = is_valid_enum(check_df, accepted_values).collect()
assert results["check_results"].eq(True).all()
def test_with_is_valid_enums(self):
accepted_values = ["1", "2"]
check_df = pa.PolarsData(pl.DataFrame({"value": "0;3"}).lazy(), "value")
results = is_valid_enum(check_df, accepted_values).collect()
assert results["check_results"].eq(False).all()
def test_with_valid_blank(self):
accepted_values = ["1", "2"]
check_df = pa.PolarsData(pl.DataFrame({"value": ""}).lazy(), "value")
results = is_valid_enum(check_df, accepted_values, accept_blank=True).collect()
assert results["check_results"].eq(True).all()
def test_with_invalid_blank(self):
accepted_values = ["1", "2"]
check_df = pa.PolarsData(pl.DataFrame({"value": ""}).lazy(), "value")
results = is_valid_enum(check_df, accepted_values).collect()
assert results["check_results"].eq(False).all()
class TestIsNumber:
def test_number_value(self):
value = "1"
result = is_number(value)
assert result is True
value = "1"
result = is_number(value, True)
assert result is True
def test_non_number_value(self):
value = "a"
result = is_number(value)
assert result is False
def test_decimal_numeric_value(self):
value = "0.1"
result = is_number(value)
assert result is True
value = "0.1"
result = is_number(value, True)
assert result is True
def test_alphanumeric_value(self):
value = "abc123"
result = is_number(value)
assert result is False
def test_negative_numeric_value(self):
value = "-1"
result = is_number(value)
assert result is True
def test_negative_decimal_value(self):
value = "-0.1"
result = is_number(value)
assert result is True
def test_valid_blank(self):
value = ""
result = is_number(value, True)
assert result is True
def test_invalid_blank(self):
value = ""
result = is_number(value, False)
assert result is False
class TestConditionalFieldConflict:
def test_conditional_field_conflict_correct(self):
# if ct_loan_term_flag != 900 then ct_loan_term must be blank
condition_values: set[str] = {"900"}
check_df = pa.PolarsData(pl.DataFrame({"ct_loan_term_flag": "988", "ct_loan_term": ""}).lazy(), "ct_loan_term")
results = has_no_conditional_field_conflict(
check_df, condition_values=condition_values, related_fields="ct_loan_term_flag"
).collect()
assert results["check_results"].eq(True).all()
# if ct_loan_term_flag == 900 then ct_loan_term must not be blank
check_df = pa.PolarsData(
pl.DataFrame({"ct_loan_term_flag": "900", "ct_loan_term": "36"}).lazy(), "ct_loan_term"
)
results = has_no_conditional_field_conflict(
check_df, condition_values=condition_values, related_fields="ct_loan_term_flag"
).collect()
assert results["check_results"].eq(True).all()
def test_conditional_field_conflict_incorrect(self):
# if ct_loan_term_flag != 900 then ct_loan_term must be blank
# in this test, ct_loan_term_flag is not 900 and ct_loan_term is
# NOT blank, so must return False
condition_values: set[str] = {"900"}
check_df = pa.PolarsData(
pl.DataFrame({"ct_loan_term_flag": "988", "ct_loan_term": "36"}).lazy(), "ct_loan_term"
)
results = has_no_conditional_field_conflict(
check_df, condition_values=condition_values, related_fields="ct_loan_term_flag"
).collect()
assert results["check_results"].eq(False).all()
# if ct_loan_term_flag == 900 then ct_loan_term must not be blank
# in this test ct_loan_term is blank, so must return False
check_df = pa.PolarsData(pl.DataFrame({"ct_loan_term_flag": "900", "ct_loan_term": ""}).lazy(), "ct_loan_term")
results = has_no_conditional_field_conflict(
check_df, condition_values=condition_values, related_fields="ct_loan_term_flag"
).collect()
assert results["check_results"].eq(False).all()
check_df = pa.PolarsData(pl.DataFrame({"ct_loan_term_flag": "900", "ct_loan_term": " "}).lazy(), "ct_loan_term")
results = has_no_conditional_field_conflict(
check_df, condition_values=condition_values, related_fields="ct_loan_term_flag"
).collect()
assert results["check_results"].eq(False).all()
class TestEnumValueConflict:
def test_enum_value_confict_correct(self):
pricing_mca_addcost_flag_conditions = [
{
"condition_values": {"1", "2"},
"is_equal_condition": True,
"target_value": "999",
"should_equal_target": False,
},
{
"condition_values": {"988"},
"is_equal_condition": True,
"target_value": "999",
"should_equal_target": True,
},
]
# If ct_credit_product == 1, 2 then pricing_mca_addcost_flag must not equal 999
check_df = pa.PolarsData(
pl.DataFrame({"ct_credit_product": "1", "pricing_mca_addcost_flag": "900"}).lazy(),
"pricing_mca_addcost_flag",
)
results = has_valid_enum_pair(
check_df, conditions=pricing_mca_addcost_flag_conditions, related_fields="ct_credit_product"
).collect()
assert results["check_results"].eq(True).all()
# If ct_credit_product == 988 then pricing_mca_addcost_flag must equal 999
check_df = pa.PolarsData(
pl.DataFrame({"ct_credit_product": "988", "pricing_mca_addcost_flag": "999"}).lazy(),
"pricing_mca_addcost_flag",
)
results = has_valid_enum_pair(
check_df, conditions=pricing_mca_addcost_flag_conditions, related_fields="ct_credit_product"
).collect()
assert results["check_results"].eq(True).all()
# If there is more than one condition:
""" If action_taken is equal to 3 THEN
IF denial_reasons contains 999 THEN
Error
ENDIF
ELSEIF action_taken is not equal to 3 THEN
IF denial_reasons is not equal to 999 THEN
Error
ENDIF
ENDIF
"""
denial_reasons_conditions = [
{
"condition_values": {"3"},
"is_equal_condition": True,
"target_value": "999",
"should_equal_target": False,
},
{
"condition_values": {"3"},
"is_equal_condition": False,
"target_value": "999",
"should_equal_target": True,
},
]
# If action_taken is 3, and denial_reasons must not equal 999,
check_df = pa.PolarsData(pl.DataFrame({"action_taken": "3", "denial_reasons": "988"}).lazy(), "denial_reasons")
results = has_valid_enum_pair(
check_df, conditions=denial_reasons_conditions, related_fields="action_taken"
).collect()
assert results["check_results"].eq(True).all()
# If action_taken is NOT 3, and denial_reasons must equal 999
check_df = pa.PolarsData(pl.DataFrame({"action_taken": "1", "denial_reasons": "999"}).lazy(), "denial_reasons")
results = has_valid_enum_pair(
check_df, conditions=denial_reasons_conditions, related_fields="action_taken"
).collect()
assert results["check_results"].eq(True).all()
def test_enum_value_confict_incorrect(self):
pricing_mca_addcost_flag_conditions = [
{
"condition_values": {"1", "2"},
"is_equal_condition": True,
"target_value": "999",
"should_equal_target": False,
},
{
"condition_values": {"988"},
"is_equal_condition": True,
"target_value": "999",
"should_equal_target": True,
},
]
# If ct_credit_product == 1, 2 then pricing_mca_addcost_flag must not equal 999
check_df = pa.PolarsData(
pl.DataFrame({"ct_credit_product": "1", "pricing_mca_addcost_flag": "999"}).lazy(),
"pricing_mca_addcost_flag",
)
results = has_valid_enum_pair(
check_df, conditions=pricing_mca_addcost_flag_conditions, related_fields="ct_credit_product"
).collect()
assert results["check_results"].eq(False).all()
# If ct_credit_product == 988 then pricing_mca_addcost_flag must equal 999
check_df = pa.PolarsData(
pl.DataFrame({"ct_credit_product": "988", "pricing_mca_addcost_flag": "900"}).lazy(),
"pricing_mca_addcost_flag",
)
results = has_valid_enum_pair(
check_df, conditions=pricing_mca_addcost_flag_conditions, related_fields="ct_credit_product"
).collect()
assert results["check_results"].eq(False).all()
# If there is more than one condition:
""" If action_taken is equal to 3 THEN
IF denial_reasons contains 999 THEN
Error
ENDIF
ELSEIF action_taken is not equal to 3 THEN
IF denial_reasons is not equal to 999 THEN
Error
ENDIF
ENDIF
"""
denial_reasons_conditions = [
{
"condition_values": {"3"},
"is_equal_condition": True,
"target_value": "999",
"should_equal_target": False,
},
{
"condition_values": {"3"},
"is_equal_condition": False,
"target_value": "999",
"should_equal_target": True,
},
]
# If action_taken is 3, and denial_reasons must not equal 999,
check_df = pa.PolarsData(pl.DataFrame({"action_taken": "3", "denial_reasons": "999"}).lazy(), "denial_reasons")
results = has_valid_enum_pair(
check_df, conditions=denial_reasons_conditions, related_fields="action_taken"
).collect()
assert results["check_results"].eq(False).all()
# If action_taken is NOT 3, and denial_reasons must equal 999
check_df = pa.PolarsData(pl.DataFrame({"action_taken": "1", "denial_reasons": "988"}).lazy(), "denial_reasons")
results = has_valid_enum_pair(
check_df, conditions=denial_reasons_conditions, related_fields="action_taken"
).collect()
assert results["check_results"].eq(False).all()
class TestHasCorrectLength:
def test_with_accept_blank_value(self):
result = has_correct_length("", 3, True)
assert result is True
def test_with_invalid_blank_value(self):
result = has_correct_length("", 3, False)
assert result is False
def test_with_correct_length(self):
result = has_correct_length("abc", 3, True)
assert result is True
def test_with_incorrect_length(self):
result = has_correct_length("1", 3, True)
assert result is False
class TestIsValidCode:
def test_with_valid_code(self):
result = is_valid_code("111", False, global_data.naics_codes)
assert result is True
result = is_valid_code("111", True, global_data.naics_codes)
assert result is True
def test_with_invalid_code(self):
result = is_valid_code("101", False, global_data.naics_codes)
assert result is False
result = is_valid_code("101", True, global_data.naics_codes)
assert result is False
def test_with_accepted_blank(self):
result = is_valid_code("", True, global_data.naics_codes)
assert result is True
result = is_valid_code(" ", True, global_data.naics_codes)
assert result is True
def test_with_invalid_blank(self):
result = is_valid_code("", False, global_data.naics_codes)
assert result is False
result = is_valid_code(" ", False, global_data.naics_codes)
assert result is False
class TestIsGreaterThan:
def test_with_greater_min_value(self):
assert is_greater_than("1", "2") is False
def test_with_smaller_min_value(self):
assert is_greater_than("1", "0") is True
def test_with_equal_value(self):
assert is_greater_than("1", "1") is False
def test_with_valid_blank_value(self):
assert is_greater_than("", "2", True) is True
assert is_greater_than(" ", "2", True) is True
def test_with_invalid_blank_value(self):
assert is_greater_than("", "2") is False
assert is_greater_than(" ", "2") is False
def test_with_larger_numbers(self):
assert is_greater_than("715", "1200") is False
assert is_greater_than("1240", "1200") is True
assert is_greater_than("125.9", "130") is False
class TestIsGreaterThanOrEqualTo:
def test_with_greater_min_value(self):
assert is_greater_than_or_equal_to("1", "2") is False
def test_with_smaller_min_value(self):
assert is_greater_than_or_equal_to("1", "0") is True
def test_with_equal_value(self):
assert is_greater_than_or_equal_to("1", "1") is True
def test_with_valid_blank_value(self):
assert is_greater_than_or_equal_to("", "2", True) is True
assert is_greater_than_or_equal_to(" ", "2", True) is True
def test_with_invalid_blank_value(self):
assert is_greater_than_or_equal_to("", "2") is False
assert is_greater_than_or_equal_to(" ", "2") is False
def test_with_larger_numbers(self):
assert is_greater_than_or_equal_to("715", "1200") is False
assert is_greater_than_or_equal_to("1240", "1200") is True
assert is_greater_than_or_equal_to("1200", "1200") is True
assert is_greater_than_or_equal_to("125.9", "130") is False
class TestIsLessThan:
def test_with_greater_max_value(self):
assert is_less_than("1", "2") is True
def test_with_less_max_value(self):
assert is_less_than("1", "0") is False
def test_with_equal_max_value(self):
assert is_less_than("1", "1") is False
def test_with_valid_blank_space(self):
assert is_less_than("", "1", True) is True
assert is_less_than(" ", "1", True) is True
def test_with_invalid_blank_space(self):
assert is_less_than("", "1") is False
assert is_less_than(" ", "1") is False
def test_with_larger_numbers(self):
assert is_less_than("715", "1200") is True
assert is_less_than("1240", "1200") is False
assert is_less_than("125.9", "130") is True
class TestHasValidFormat:
def test_with_valid_data_alphanumeric(self):
check_df = pa.PolarsData(pl.DataFrame({"value": "1"}).lazy(), "value")
results = has_valid_format(check_df, regex="^[0-9A-Z]$").collect()
assert results["check_results"].eq(True).all()
check_df = pa.PolarsData(pl.DataFrame({"value": "A"}).lazy(), "value")
results = has_valid_format(check_df, regex="^[0-9A-Z]$").collect()
assert results["check_results"].eq(True).all()
check_df = pa.PolarsData(pl.DataFrame({"value": "1ABC"}).lazy(), "value")
results = has_valid_format(check_df, regex="^[0-9A-Z]+$").collect()
assert results["check_results"].eq(True).all()
def test_with_invalid_data_alphanumeric(self):
check_df = pa.PolarsData(pl.DataFrame({"value": "a"}).lazy(), "value")
results = has_valid_format(check_df, regex="^[0-9A-Z]$").collect()
assert results["check_results"].eq(False).all()
check_df = pa.PolarsData(pl.DataFrame({"value": "aaaa"}).lazy(), "value")
results = has_valid_format(check_df, regex="^[0-9A-Z]+$").collect()
assert results["check_results"].eq(False).all()
check_df = pa.PolarsData(pl.DataFrame({"value": "!"}).lazy(), "value")
results = has_valid_format(check_df, regex="^[0-9A-Z]$").collect()
assert results["check_results"].eq(False).all()
def test_with_accepting_blank(self):
check_df = pa.PolarsData(pl.DataFrame({"value": ""}).lazy(), "value")
results = has_valid_format(check_df, regex="^[0-9A-Z]+$", accept_blank=True).collect()
assert results["check_results"].eq(True).all()
def test_with_not_accepting_blank(self):
check_df = pa.PolarsData(pl.DataFrame({"value": ""}).lazy(), "value")
results = has_valid_format(check_df, regex="^[0-9A-Z]+$").collect()
assert results["check_results"].eq(False).all()
# tests with different regex
def test_with_valid_data_ip(self):
check_df = pa.PolarsData(pl.DataFrame({"value": "192.168.0.1"}).lazy(), "value")
results = has_valid_format(check_df, regex=r"^[0-9]{1,3}\.[0-9]{1,3}\.[0-9]{1,3}\.[0-9]{1,3}$").collect()
assert results["check_results"].eq(True).all()
check_df = pa.PolarsData(pl.DataFrame({"value": "192.168.120.100"}).lazy(), "value")
results = has_valid_format(check_df, regex=r"^[0-9]{1,3}\.[0-9]{1,3}\.[0-9]{1,3}\.[0-9]{1,3}$").collect()
assert results["check_results"].eq(True).all()
def test_with_invalid_data_ip(self):
check_df = pa.PolarsData(pl.DataFrame({"value": "192.168.0.1000"}).lazy(), "value")
results = has_valid_format(check_df, regex=r"^[0-9]{1,3}\.[0-9]{1,3}\.[0-9]{1,3}\.[0-9]{1,3}$").collect()
assert results["check_results"].eq(False).all()
check_df = pa.PolarsData(pl.DataFrame({"value": "192.168.0"}).lazy(), "value")
results = has_valid_format(check_df, regex=r"^[0-9]{1,3}\.[0-9]{1,3}\.[0-9]{1,3}\.[0-9]{1,3}$").collect()
assert results["check_results"].eq(False).all()
class TestIsUniqueColumn:
series = pl.Series(values=["ABC123"], name="id")
other_series = pl.Series(values=["DEF456"], name="id")
invalid_series = pl.Series(values=["ABC123", "ABC123"], name="id")
multi_invalid_series = pl.Series(values=["GHI123", "GHI123", "GHI123"], name="id")
blank_value_series = pl.Series(values=[""], name="id")
def test_with_valid_series(self):
check_df = pa.PolarsData(pl.DataFrame({"uid": "ABC123"}).lazy(), "uid")
results = is_unique_column(check_df).collect()
assert results["check_results"].eq(True).all()
def test_with_multiple_valid_series(self):
check_df = pa.PolarsData(pl.DataFrame({"uid": ["ABC123", "ABC456"]}).lazy(), "uid")
results = is_unique_column(check_df).collect()
assert results["check_results"].eq(True).all()
def test_with_invalid_series(self):
check_df = pa.PolarsData(pl.DataFrame({"uid": ["ABC123", "ABC123"]}).lazy(), "uid")
results = is_unique_column(check_df).collect()
assert results["check_results"].eq(False).all()
def test_with_multiple_items_series(self):
check_df = pa.PolarsData(pl.DataFrame({"uid": ["ABC123", "ABC456", "ABC123", "ABC456"]}).lazy(), "uid")
results = is_unique_column(check_df).collect()
assert results["check_results"].eq(False).all()
def test_with_multiple_mix_series(self):
check_df = pa.PolarsData(pl.DataFrame({"uid": ["ABC123", "ABC456", "ABC123"]}).lazy(), "uid")
results = is_unique_column(check_df).collect()
assert not results["check_results"][0] and results["check_results"][1] and not results["check_results"][2]
def test_with_blank_value_series(self):
check_df = pa.PolarsData(pl.DataFrame({"uid": [""]}).lazy(), "uid")
results = is_unique_column(check_df).collect()
assert results["check_results"].eq(True).all()
class TestHasValidFieldsetPair:
def test_with_correct_is_not_equal_condition(self):
condition_values = ["0", ""]
should_fieldset_key_equal_to = {
"field1": (0, True, ""),
"field2": (1, True, ""),
"field3": (2, True, ""),
}
check_data = {"num_principal_owners": "0", "field1": "", "field2": "", "field3": ""}
check_df = pa.PolarsData(pl.DataFrame(check_data).lazy(), "num_principal_owners")
results = has_valid_fieldset_pair(
check_df,
condition_values=condition_values,
related_fields=["field1", "field2", "field3"],
should_fieldset_key_equal_to=should_fieldset_key_equal_to,
).collect()
assert results["check_results"].eq(True).all()
def test_with_correct_is_equal_condition(self):
condition_values = ["0", ""]
should_fieldset_key_equal_to = {
"field1": (0, False, ""),
"field2": (1, False, ""),
"field3": (2, False, ""),
}
check_data = {"num_principal_owners": "0", "field1": "999", "field2": "999", "field3": "0"}
check_df = pa.PolarsData(pl.DataFrame(check_data).lazy(), "num_principal_owners")
results = has_valid_fieldset_pair(
check_df,
condition_values=condition_values,
related_fields=["field1", "field2", "field3"],
should_fieldset_key_equal_to=should_fieldset_key_equal_to,
).collect()
assert results["check_results"].eq(True).all()
def test_with_correct_is_equal_and_not_equal_conditions(self):
condition_values = ["0", ""]
should_fieldset_key_equal_to = {
"field1": (0, True, "999"),
"field2": (1, True, "999"),
"field3": (2, True, "0"),
"field4": (3, False, ""),
"field5": (4, False, ""),
}
check_data = {
"num_principal_owners": "0",
"field1": "999",
"field2": "999",
"field3": "0",
"field4": "1",
"field5": "2",
}
check_df = pa.PolarsData(pl.DataFrame(check_data).lazy(), "num_principal_owners")
results = has_valid_fieldset_pair(
check_df,
condition_values=condition_values,
related_fields=["field1", "field2", "field3", "field4", "field5"],
should_fieldset_key_equal_to=should_fieldset_key_equal_to,
).collect()
assert results["check_results"].eq(True).all()
def test_with_value_not_in_condition_values(self):
condition_values = ["0", ""]
should_fieldset_key_equal_to = {
"field1": (0, True, "999"),
"field2": (1, True, "999"),
"field3": (2, True, "0"),
"field4": (3, False, "1"),
"field5": (4, False, "2"),
}
check_data = {
"num_principal_owners": "2",
"field1": "999",
"field2": "999",
"field3": "0",
"field4": "1",
"field5": "2",
}
check_df = pa.PolarsData(pl.DataFrame(check_data).lazy(), "num_principal_owners")
results = has_valid_fieldset_pair(
check_df,
condition_values=condition_values,
related_fields=["field1", "field2", "field3", "field4", "field5"],
should_fieldset_key_equal_to=should_fieldset_key_equal_to,
).collect()
assert results["check_results"].eq(True).all()
def test_with_incorrect_is_not_equal_condition(self):
condition_values = ["0", ""]
should_fieldset_key_equal_to = {
"field1": (0, True, ""),
"field2": (1, True, ""),
"field3": (2, True, ""),
}
check_data = {"num_principal_owners": "0", "field1": "999", "field2": "999", "field3": "999"}
check_df = pa.PolarsData(pl.DataFrame(check_data).lazy(), "num_principal_owners")
results = has_valid_fieldset_pair(
check_df,
condition_values=condition_values,
related_fields=["field1", "field2", "field3"],
should_fieldset_key_equal_to=should_fieldset_key_equal_to,
).collect()
assert results["check_results"].eq(False).all()
def test_with_incorrect_is_equal_condition(self):
condition_values = ["0", ""]
should_fieldset_key_equal_to = {
"field1": (0, False, ""),
"field2": (1, False, ""),
"field3": (2, False, ""),
}
check_data = {"num_principal_owners": "0", "field1": "", "field2": "", "field3": ""}
check_df = pa.PolarsData(pl.DataFrame(check_data).lazy(), "num_principal_owners")
results = has_valid_fieldset_pair(
check_df,
condition_values=condition_values,
related_fields=["field1", "field2", "field3"],
should_fieldset_key_equal_to=should_fieldset_key_equal_to,
).collect()
assert results["check_results"].eq(False).all()
def test_with_incorrect_is_equal_and_not_equal_conditions(self):
condition_values = ["0", ""]
should_fieldset_key_equal_to = {
"field1": (0, True, "999"),
"field2": (1, True, "999"),
"field3": (2, True, "0"),
"field4": (3, False, ""),
"field5": (4, False, ""),
}
check_data = {
"num_principal_owners": "0",
"field1": "",
"field2": "",
"field3": "3",
"field4": "4",
"field5": "5",
}
check_df = pa.PolarsData(pl.DataFrame(check_data).lazy(), "num_principal_owners")
results = has_valid_fieldset_pair(
check_df,
condition_values=condition_values,
related_fields=["field1", "field2", "field3", "field4", "field5"],
should_fieldset_key_equal_to=should_fieldset_key_equal_to,
).collect()
assert results["check_results"].eq(False).all()
class TestIsValidId:
def test_with_correct_values(self):
"""when start_idx and end_idx are not set,
if value matches containing_value, must return true"""
assert string_contains("000TESTFIUIDDONOTUSE", "000TESTFIUIDDONOTUSE") is True
""" when start_idx and end_idx are set,
if sliced value matches ontaining_value, must return true """
assert (
string_contains(
"000TESTFIUIDDONOTUSEXGXVID11XTC1",
"TEST",
start_idx=3,
end_idx=7,
)
is True
)
""" when only start_idx is set,
if sliced value matches containing_value, must return true """
assert (
string_contains(
"000TESTFIUIDDONOTUSEXGXVID11XTC1",
"TESTFIUIDDONOTUSEXGXVID11XTC1",
start_idx=3,
)
is True
)
""" when only end_idx is set,
if sliced value matches containing_value, must return true """
assert (
string_contains(
"000TESTFIUIDDONOTUSEXGXVID11XTC1",
"000TESTFIUIDDONOTUSE",
end_idx=20,
)
is True
)
def test_with_incorrect_values(self):
"""when start_idx and end_idx are not set,
if value does not match containing_value, must return false"""
assert string_contains("000TESTFIUIDDONOTUSE", "TESTFIUIDDONOTUSE") is False
""" when start_idx and end_idx are set,
if sliced value does not match containing_value, must return false """
assert string_contains("000FIUIDDONOTUSEXGXVID11XTC1", "TEST", start_idx=4, end_idx=7) is False
""" when only start_idx is set,
if sliced value does not match containing_value, must return false """
assert (
string_contains(
"000TESTFIUIDDONOTUSEXGXVID11XTC1",
"0TESTFIUIDDONOTUSEXGXVID11XTC1",
start_idx=4,
)
is False
)
""" when only end_idx is set,
if sliced value does not match containing_value, must return false """
assert (
string_contains(
"000TESTFIUIDDONOTUSEXGXVID11XTC1",
"000TESTFIUIDDONOTUSEXGX",
end_idx=20,
)
is False
)