-
Notifications
You must be signed in to change notification settings - Fork 2
/
draft-irtf-cfrg-kangarootwelve.xml
1384 lines (1141 loc) · 57.9 KB
/
draft-irtf-cfrg-kangarootwelve.xml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
<?xml version="1.0" encoding="US-ASCII"?>
<!DOCTYPE rfc SYSTEM "rfc2629.dtd" [
<!ENTITY rfc2119 SYSTEM "http://xml.resource.org/public/rfc/bibxml/reference.RFC.2119.xml">
<!ENTITY rfc8174 SYSTEM "http://xml.resource.org/public/rfc/bibxml/reference.RFC.8174.xml">
]>
<?rfc toc="yes"?>
<?rfc symrefs="yes"?>
<?rfc compact="yes"?>
<?rfc subcompact="no"?>
<?rfc strict="no"?>
<?rfc rfcedstyle="yes"?>
<?rfc comments="yes"?>
<?rfc inline="yes"?>
<rfc category="info" docName="draft-irtf-cfrg-kangarootwelve-latest" ipr="trust200902">
<front>
<title abbrev="KangarooTwelve">KangarooTwelve and TurboSHAKE</title>
<!-- If the author is acting as editor, use the <role=editor> attribute-->
<!-- see RFC2223 for guidelines regarding author names -->
<author fullname="Benoît Viguier" initials="B" surname="Viguier">
<organization>ABN AMRO Bank</organization>
<address>
<postal>
<street>Groenelaan 2</street>
<city>Amstelveen</city>
<country>The Netherlands</country>
</postal>
<email>cs.ru.nl@viguier.nl</email>
</address>
</author>
<author fullname="David Wong" initials="D" surname="Wong" role="editor">
<organization>zkSecurity</organization>
<address>
<email>davidwong.crypto@gmail.com</email>
</address>
</author>
<author fullname="Gilles Van Assche" initials="G" surname="Van Assche" role="editor">
<organization>STMicroelectronics</organization>
<address>
<email>gilles.vanassche@st.com</email>
</address>
</author>
<author fullname="Quynh Dang" initials="Q" surname="Dang" role="editor">
<organization abbrev="NIST">National Institute of Standards and Technology</organization>
<address>
<email>quynh.dang@nist.gov</email>
</address>
</author>
<author fullname="Joan Daemen" initials="J" surname="Daemen" role="editor">
<organization>Radboud University</organization>
<address>
<email>joan@cs.ru.nl</email>
</address>
</author>
<!-- <author fullname="Stanislav V. Smyshlyaev" initials="S" surname="Smyshlyaev">
<organization>CryptoPro</organization>
<address>
<email>smyshsv@gmail.com</email>
</address>
</author> -->
<!-- <author fullname="John Mattsson" initials="J" surname="Mattsson">
<organization>Ericsson</organization>
<address>
<email>john.mattsson@ericsson.com</email>
</address>
</author> -->
<!-- month and day will be generated automatically by XL2RFC;
be sure the year is current.-->
<date year="2024" />
<!--WG name at the upperleft corner of the doc,
IETF is fine for non-WG IETF submissions -->
<workgroup>Crypto Forum</workgroup>
<keyword>Keccak</keyword>
<keyword>Sakura</keyword>
<keyword>KangarooTwelve</keyword>
<keyword>TurboSHAKE</keyword>
<keyword>Cryptographic Hash</keyword>
<keyword>eXtendable Output Function</keyword>
<abstract>
<t>This document defines four eXtendable Output Functions (XOF),
hash functions with output of arbitrary length, named TurboSHAKE128,
TurboSHAKE256, KT128 and KT256.</t>
<t>All four functions provide efficient and secure hashing primitives,
and the last two are able to exploit the parallelism of the implementation
in a scalable way.</t>
<t>This document is a product of the Crypto Forum Research Group.
It builds up on the definitions of the permutations and of the
sponge construction in [FIPS 202], and is meant to serve as a stable reference
and an implementation guide.</t>
</abstract>
</front>
<middle>
<section title="Introduction">
<t>This document defines the TurboSHAKE128, TurboSHAKE256 <xref target="TURBOSHAKE"></xref>,
KT128 and KT256 <xref target="KT"></xref> eXtendable Output Functions (XOF),
i.e., a hash function generalization that can return an output of arbitrary length.
Both TurboSHAKE128 and TurboSHAKE256 are based on a Keccak-p permutation specified in <xref
target="FIPS202"></xref> and have a higher speed than the SHA-3 and SHAKE functions.</t>
<t>TurboSHAKE is a sponge function family that makes use of Keccak-p[n_r=12,b=1600], a round-reduced
version of the permutation used in SHA-3. Similarly to the SHAKE's, it proposes two security strengths:
128 bits for TurboSHAKE128 and 256 bits for TurboSHAKE256.
Halving the number of rounds compared to the original SHAKE functions makes TurboSHAKE roughly two times
faster.</t>
<t>
KangarooTwelve applies tree hashing on top of TurboSHAKE and comprises two functions, KT128 and KT256.
Note that <xref target="KT"></xref> only defined KT128 under the name KangarooTwelve.
KT256 is defined in this document.
</t>
<t>
The SHA-3 and SHAKE functions process data in a serial manner and are strongly
limited in exploiting available parallelism in modern CPU architectures.
Similar to ParallelHash <xref target="SP800-185"></xref>, KangarooTwelve splits
the input message into fragments. It then applies TurboSHAKE on each of them
separately before applying TurboSHAKE again on the combination of the first
fragment and the digests.
More precisely, KT128 uses TurboSHAKE128 and KT256 uses TurboSHAKE256.
They make use of Sakura coding for ensuring soundness of the tree hashing
mode <xref target="SAKURA"/>.
The use of TurboSHAKE in KangarooTwelve makes it faster than ParallelHash.</t>
<t>The security of TurboSHAKE128, TurboSHAKE256, KT128 and KT256 builds on the public
scrutiny that Keccak has received since its
publication <xref target="KECCAK_CRYPTANALYSIS"/><xref target="TURBOSHAKE"/>.</t>
<t>With respect to <xref target="FIPS202"></xref> and <xref target="SP800-185"></xref>
functions, TurboSHAKE128, TurboSHAKE256, KT128 and KT256 feature the following advantages:</t>
<t><list style="symbols">
<t>Unlike SHA3-224, SHA3-256, SHA3-384, SHA3-512, the TurboSHAKE and
KangarooTwelve functions have an extendable output.</t>
<t>Unlike any <xref target="FIPS202"></xref> defined function, similarly to
functions defined in <xref target="SP800-185"></xref>, KT128 and KT256
allow the use of a customization string.</t>
<t>Unlike any <xref target="FIPS202"></xref> and <xref target="SP800-185"></xref>
functions but ParallelHash, KT128 and KT256 exploit available parallelism.</t>
<t>Unlike ParallelHash, KT128 and KT256 do not have overhead when
processing short messages.</t>
<t>The permutation in the TurboSHAKE functions has half
the number of rounds compared to the one in the SHA-3 and SHAKE functions,
making them faster than any function defined in <xref target="FIPS202"></xref>.
The KangarooTwelve functions immediately benefit from the same speedup, improving over
<xref target="FIPS202"></xref> and <xref target="SP800-185"></xref>.</t>
</list></t>
<t>With respect to SHA-256 and SHA-512 and other <xref target="FIPS180"/> functions, TurboSHAKE128, TurboSHAKE256, KT128 and KT256 feature the following advantages:</t>
<t><list style="symbols">
<t>Unlike <xref target="FIPS180"/> functions, the TurboSHAKE and KangarooTwelve functions have an extendable output.</t>
<t>The TurboSHAKE functions produce output at the same rate as they process input, whereas SHA-256 and SHA-512, when used in a mask generation function (MGF) construction, produce output half as fast as they process input.</t>
<t>Unlike the SHA-256 and SHA-512 functions, TurboSHAKE128, TurboSHAKE256, KT128 and KT256 do not suffer from the length extension weakness.</t>
<t>Unlike any <xref target="FIPS180"></xref> functions, TurboSHAKE128, TurboSHAKE256, KT128 and KT256 use a round function with algebraic degree 2, which makes them more suitable to masking techniques for protections against side-channel attacks.</t>
</list></t>
<t>This document represents the consensus of the Crypto Forum Research Group (CFRG)
in the IRTF. It is not an IETF product and is not a standard.</t>
<section title="Conventions">
<t>The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in BCP 14 <xref target="RFC2119"></xref> <xref target="RFC8174"></xref>
when, and only when, they appear in all capitals, as shown here.</t>
<t>The following notations are used throughout the document:</t>
<t><list style="hanging">
<t hangText="`...`">denotes a string of bytes given in
hexadecimal. For example, `0B 80`.</t>
<t hangText="|s|">denotes the length of a byte string `s`.
For example, |`FF FF`| = 2.</t>
<t hangText="`00`^b">denotes a byte string consisting of the concatenation
of b bytes `00`. For example, `00`^7 = `00 00 00 00 00 00 00`.</t>
<t hangText="`00`^0">denotes the empty byte-string.</t>
<t hangText="a||b">denotes the concatenation of two strings a and b.
For example, `10`||`F1` = `10 F1`</t>
<t hangText="s[n:m]">denotes the selection of bytes from n (inclusive) to m
(exclusive) of a string s. The indexing of a byte-string starts at 0.
For example, for s = `A5 C6 D7`, s[0:1] = `A5` and s[1:3] = `C6 D7`.</t>
<t hangText="s[n:]">denotes the selection of bytes from n to the end of
a string s.
For example, for s = `A5 C6 D7`, s[0:] = `A5 C6 D7` and s[2:] = `D7`.</t>
</list></t>
<t>In the following, x and y are byte strings of equal length:</t>
<t><list style="hanging">
<t hangText="x^=y"> denotes x takes the value x XOR y.</t>
<t hangText="x & y"> denotes x AND y.</t>
</list></t>
<t>In the following, x and y are integers:</t>
<t><list style="hanging">
<t hangText="x+=y"> denotes x takes the value x + y.</t>
<t hangText="x-=y"> denotes x takes the value x - y.</t>
<t hangText="x**y"> denotes the exponentiation of x by y.</t>
<t hangText="x mod y"> denotes the remainder of the division of x by y.</t>
<t hangText="x / y"> denotes the integer dividend of the division of x by y.</t>
</list></t>
</section>
</section>
<section title="TurboSHAKE">
<section anchor="TurboSHAKE_Interface" title="Interface">
<t>TurboSHAKE is a family of eXtendable Output Functions (XOF).
Internally, it makes use of the sponge construction, parameterized by two integers, the rate and the capacity, that sum to the permutation width (here, 1600 bits).
The rate gives the number of bits processed or produced per call to the permutation, whereas the capacity determines the security level, see <xref target="FIPS202"/> for more details.
This document focuses on only two instances, namely, TurboSHAKE128 and TurboSHAKE256.
(Note that the original definition includes a wider range of instances parameterized by their capacity <xref target="TURBOSHAKE"/>.)
</t>
<t>
An instance of TurboSHAKE takes as input parameters a byte-string M, an OPTIONAL byte D and a positive integer L
where<list style="hanging">
<t hangText="M"> byte-string, is the Message and</t>
<t hangText="D"> byte in the range [`01`, `02`, .. , `7F`], is an OPTIONAL Domain separation byte and</t>
<t hangText="L"> positive integer, is the requested number of output bytes.</t>
</list></t>
<t>
Conceptually, a XOF can be viewed as a hash function with an infinitely long output truncated to L bytes.
This means that calling a XOF with the same input parameters but two different lengths yields outputs such that the shorter one is a prefix of the longer one.
Specifically, if L1 < L2, then TurboSHAKE(M, D, L1) is the same as the first L1 bytes of TurboSHAKE(M, D, L2).
</t>
<t>By default, the Domain separation byte is `1F`. For an API that
does not support a domain separation byte, D MUST be the `1F`.</t>
<t>
The TurboSHAKE instance produces output that is a hash of the (M, D) couple.
If D is fixed, this becomes a hash of the Message M.
However, a protocol that requires a number of independent hash functions can choose different values for D to implement these.
Specifically, for any distinct values D1 and D2, TurboSHAKE(M, D1, L1) and TurboSHAKE(M, D2, L2) yield independent hashes of M.
</t>
<t>
Note that an implementation MAY propose an incremental input interface where the input string M is given in pieces.
If so, the output MUST be the same as if the function was called with M equal to the concatenation of the different pieces in the order they were given.
Independently, an implementation MAY propose an incremental output interface where the output string is requested in pieces of given lengths.
When the output is formed by concatenating the pieces in the requested order, it MUST be the same as if the function was called with L equal to the sum of the given lengths.
</t>
</section>
<section title="Specifications">
<t>TurboSHAKE makes use of the permutation Keccak-p[1600,n_r=12],
i.e., the permutation used in SHAKE and SHA-3 functions reduced
to its last n_r=12 rounds and specified in FIPS 202, Sections
3.3 and 3.4 <xref target="FIPS202"></xref>.
KP denotes this permutation.</t>
<t>Similarly to SHAKE128, TurboSHAKE128 is a sponge function
calling this permutation KP with a rate of 168 bytes
or 1344 bits. It follows that TurboSHAKE128 has a capacity of
1600 - 1344 = 256 bits or 32 bytes. Respectively to SHAKE256, TurboSHAKE256 makes use
of a rate of 136 bytes or 1088 bits, and has a capacity of 512 bits or 64 bytes.</t>
<t><figure><artwork><![CDATA[
+-------------+--------------+
| Rate | Capacity |
+----------------+-------------+--------------+
| TurboSHAKE128 | 168 Bytes | 32 Bytes |
| | | |
| TurboSHAKE256 | 136 Bytes | 64 Bytes |
+----------------+-------------+--------------+]]></artwork>
</figure></t>
<t>We now describe the operations inside TurboSHAKE128.<list style="symbols">
<t>First the input M' is formed by appending the domain separation byte D to the message M.</t>
<t>
If the length of M' is not a multiple of 168 bytes then it is padded with zeros at the end to make it a multiple of 168 bytes.
If M' is already a multiple of 168 bytes then no padding is added.
Then a byte `80` is XORed to the last byte of the padded input M'
and the resulting string is split into a sequence of 168-byte blocks.
</t>
<t>M' never has a length of 0 bytes due to the presence of the domain separation byte.</t>
<t>As defined by the sponge construction, the process operates on a state
and consists of two phases: the absorbing phase that processes the padded input M'
and the squeezing phase that produces the output.</t>
<t>In the absorbing phase the state is initialized to all-zero. The
message blocks are XORed into the first 168 bytes of the state.
Each block absorbed is followed with an application of KP to the state.</t>
<t> In the squeezing phase the output is formed by taking the first 168 bytes of the state,
applying KP to the state, and repeating as many times as is necessary.</t>
</list></t>
<t>TurboSHAKE256 performs the same steps but makes use of 136-byte blocks with respect
to the padding, absorbing, and squeezing phases.</t>
<t>
The definition of the TurboSHAKE functions equivalently implements the pad10*1 rule; see Section 5.1 of <xref target="FIPS202"/> for a definition of pad10*1.
While M can be empty, the D byte is always present and is in the `01`-`7F` range.
This last byte serves as domain separation and integrates the first bit of padding
of the pad10*1 rule (hence it cannot be `00`).
Additionally, it must leave room for the second bit of padding
(hence it cannot have the MSB set to 1), should it be the last byte of the block.
For more details, refer to Section 6.1 of <xref target="KT"></xref> and Section 3 of <xref target="TURBOSHAKE"></xref>.</t>
<t>The pseudocode versions of TurboSHAKE128 and TurboSHAKE256 are provided respectively in <xref target="TSHK128_PC"/> and <xref target="TSHK256_PC"/>.</t>
</section>
</section>
<section title="KangarooTwelve: Tree hashing over TurboSHAKE">
<section title="Interface">
<t>KangarooTwelve is a family of eXtendable Output Functions (XOF) consisting of the KT128 and KT256 instances.
A KangarooTwelve instance takes as input parameters two byte-strings (M, C) and a positive integer L
where <list style="hanging">
<t hangText="M"> byte-string, is the Message and</t>
<t hangText="C"> byte-string, is an OPTIONAL Customization string and</t>
<t hangText="L"> positive integer, the requested number of output bytes.</t>
</list></t>
<t>The Customization string MAY serve as domain separation.
It is typically a short string such as a name or an identifier (e.g. URI,
ODI...).
It can serve the same purpose as TurboSHAKE's D input parameter (see <xref target="TurboSHAKE_Interface"/>), but with a larger range.
</t>
<t>By default, the Customization string is the empty string. For an API that
does not support a customization string parameter, C MUST be the empty string.</t>
<t>Note that an implementation MAY propose an interface with the input and/or output provided incrementally as specified in <xref target="TurboSHAKE_Interface"/>.</t>
</section>
<section title="Specification of KT128">
<t>On top of the sponge function TurboSHAKE128, KT128 uses a
Sakura-compatible tree hash mode <xref target="SAKURA"></xref>.
First, merge M and the OPTIONAL C to a single input string S in a
reversible way. length_encode( |C| ) gives the length in bytes of C as a
byte-string.
See <xref target="RE"/>.</t>
<t><figure><artwork><![CDATA[
S = M || C || length_encode( |C| ) ]]></artwork></figure></t>
<t>Then, split S into n chunks of 8192 bytes.</t>
<t><figure><artwork><![CDATA[
S = S_0 || .. || S_(n-1)
|S_0| = .. = |S_(n-2)| = 8192 bytes
|S_(n-1)| <= 8192 bytes ]]></artwork></figure></t>
<t>From S_1 .. S_(n-1), compute the 32-byte Chaining Values CV_1 .. CV_(n-1).
In order to be optimally efficient, this computation MAY exploit the
parallelism available on the platform such as SIMD instructions.</t>
<t><figure><artwork><![CDATA[
CV_i = TurboSHAKE128( S_i, `0B`, 32 )]]></artwork></figure></t>
<t>Compute the final node: FinalNode.
<list style="symbols">
<t>If |S| <= 8192 bytes, FinalNode = S</t>
<t>Otherwise compute FinalNode as follows:</t>
</list></t>
<t><figure><artwork><![CDATA[
FinalNode = S_0 || `03 00 00 00 00 00 00 00`
FinalNode = FinalNode || CV_1
..
FinalNode = FinalNode || CV_(n-1)
FinalNode = FinalNode || length_encode(n-1)
FinalNode = FinalNode || `FF FF`]]></artwork></figure></t>
<t>Finally, the KT128 output is retrieved:
<list style="symbols">
<t>If |S| <= 8192 bytes, from TurboSHAKE128( FinalNode, `07`, L )</t>
</list></t>
<t><figure>
<artwork><![CDATA[
KT128( M, C, L ) = TurboSHAKE128( FinalNode, `07`, L )]]>
</artwork></figure></t>
<t><list style="symbols">
<t>Otherwise from TurboSHAKE128( FinalNode, `06`, L )</t>
</list></t>
<t><figure>
<artwork><![CDATA[
KT128( M, C, L ) = TurboSHAKE128( FinalNode, `06`, L )]]>
</artwork></figure></t>
<t>The following figure illustrates the computation flow of KT128
for |S| <= 8192 bytes:</t>
<t><figure><artwork><![CDATA[
+--------------+ TurboSHAKE128(.., `07`, L)
| S |-----------------------------> output
+--------------+]]></artwork></figure></t>
<t>The following figure illustrates the computation flow of KT128
for |S| > 8192 bytes and where TurboSHAKE128 and length_encode( x ) are
abbreviated as respectively TSHK128 and l_e( x ) :</t>
<t><figure><artwork><![CDATA[
+--------------+
| S_0 |
+--------------+
||
+--------------+
| `03`||`00`^7 |
+--------------+
||
+---------+ TSHK128(..,`0B`,32) +--------------+
| S_1 |---------------------->| CV_1 |
+---------+ +--------------+
||
+---------+ TSHK128(..,`0B`,32) +--------------+
| S_2 |---------------------->| CV_2 |
+---------+ +--------------+
||
.. ..
||
+---------+ TSHK128(..,`0B`,32) +--------------+
| S_(n-1) |----------------------->| CV_(n-1) |
+---------+ +--------------+
||
+--------------+
| l_e( n-1 ) |
+--------------+
||
+--------------+
| `FF FF` |
+--------------+
| TSHK128(.., `06`, L)
+--------------------> output]]></artwork></figure></t>
<t>A pseudocode version is provided in <xref target="KT128_PC"/>.</t>
<t>The table below gathers the values of the domain separation
bytes used by the tree hash mode:</t>
<t><figure><artwork><![CDATA[
+--------------------+------------------+
| Type | Byte |
+--------------------+------------------+
| SingleNode | `07` |
| | |
| IntermediateNode | `0B` |
| | |
| FinalNode | `06` |
+--------------------+------------------+]]></artwork>
</figure></t>
</section>
<section anchor="RE" title="length_encode( x )">
<t>The function length_encode takes as inputs a non-negative integer x
< 256**255 and outputs a string of bytes x_(n-1) || .. || x_0 || n where</t>
<t><figure>
<artwork><![CDATA[
x = sum of 256**i * x_i for i from 0 to n-1]]></artwork></figure></t>
<t>and where n is the smallest non-negative integer such that x < 256**n.
n is also the length of x_(n-1) || .. || x_0.</t>
<t>As example, length_encode(0) = `00`, length_encode(12) = `0C 01` and
length_encode(65538) = `01 00 02 03`</t>
<t>A pseudocode version is as follows where { b } denotes the byte of numerical value b.</t>
<t><figure><artwork><![CDATA[
length_encode(x):
S = `00`^0
while x > 0
S = { x mod 256 } || S
x = x / 256
S = S || { |S| }
return S
end]]></artwork></figure></t>
</section>
<section title="Specification of KT256">
<t>KT256 is specified exactly like KT128, with two differences:</t>
<list style="symbols">
<t>All the calls to TurboSHAKE128 in KT128 are replaced with calls to TurboSHAKE256 in KT256.</t>
<t>The chaining values CV_1 to CV_(n-1) are 64-byte long in KT256 and are computed as follows:</t>
</list>
<t><figure><artwork><![CDATA[
CV_i = TurboSHAKE256( S_i, `0B`, 64 )]]></artwork></figure></t>
<t>A pseudocode version is provided in <xref target="KT256_PC"/>.</t>
</section>
</section>
<section title="Message authentication codes">
<t>Implementing a MAC with KT128 or KT256 MAY use a hash-then-MAC construction.
This document defines and recommends a method called HopMAC:</t>
<t><figure>
<artwork><![CDATA[
HopMAC128(Key, M, C, L) = KT128(Key, KT128(M, C, 32), L)
HopMAC256(Key, M, C, L) = KT256(Key, KT256(M, C, 64), L)]]></artwork>
</figure></t>
<t>Similarly to HMAC, HopMAC consists of two calls: an inner call compressing the
message M and the optional customization string C to a digest,
and an outer call computing the tag from the key and the digest.</t>
<t>Unlike HMAC, the inner call to KangarooTwelve in HopMAC is keyless
and does not require additional protection against side channel attacks (SCA).
Consequently, in an implementation that has to protect the HopMAC key
against SCA only the outer call does need protection,
and this amounts to a single execution of the underlying permutation (assuming the key length is at most 69 bytes).</t>
<t>In any case, TurboSHAKE128, TurboSHAKE256, KT128 and KT256
MAY be used to compute a MAC with the key
reversibly prepended or appended to the input. For instance, one MAY
compute a MAC on short messages simply calling KT128 with the
key as the customization string, i.e., MAC = KT128(M, Key, L).</t>
</section>
<section title="Test vectors">
<t>Test vectors are based on the repetition of the pattern `00 01 02 .. F9 FA`
with a specific length. ptn(n) defines a string by repeating the pattern
`00 01 02 .. F9 FA` as many times as necessary and truncated to n bytes e.g.
</t>
<t><figure><artwork><![CDATA[ Pattern for a length of 17 bytes:
ptn(17) =
`00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F 10`]]></artwork></figure>
</t>
<t><figure><artwork><![CDATA[ Pattern for a length of 17**2 bytes:
ptn(17**2) =
`00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F
10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F
20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F
30 31 32 33 34 35 36 37 38 39 3A 3B 3C 3D 3E 3F
40 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F
50 51 52 53 54 55 56 57 58 59 5A 5B 5C 5D 5E 5F
60 61 62 63 64 65 66 67 68 69 6A 6B 6C 6D 6E 6F
70 71 72 73 74 75 76 77 78 79 7A 7B 7C 7D 7E 7F
80 81 82 83 84 85 86 87 88 89 8A 8B 8C 8D 8E 8F
90 91 92 93 94 95 96 97 98 99 9A 9B 9C 9D 9E 9F
A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 AA AB AC AD AE AF
B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 BA BB BC BD BE BF
C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 CA CB CC CD CE CF
D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 DA DB DC DD DE DF
E0 E1 E2 E3 E4 E5 E6 E7 E8 E9 EA EB EC ED EE EF
F0 F1 F2 F3 F4 F5 F6 F7 F8 F9 FA
00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F
10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F
20 21 22 23 24 25`]]></artwork></figure></t>
<t><figure><artwork><![CDATA[
TurboSHAKE128(M=`00`^0, D=`1F`, 32):
`1E 41 5F 1C 59 83 AF F2 16 92 17 27 7D 17 BB 53
8C D9 45 A3 97 DD EC 54 1F 1C E4 1A F2 C1 B7 4C`
TurboSHAKE128(M=`00`^0, D=`1F`, 64):
`1E 41 5F 1C 59 83 AF F2 16 92 17 27 7D 17 BB 53
8C D9 45 A3 97 DD EC 54 1F 1C E4 1A F2 C1 B7 4C
3E 8C CA E2 A4 DA E5 6C 84 A0 4C 23 85 C0 3C 15
E8 19 3B DF 58 73 73 63 32 16 91 C0 54 62 C8 DF`
TurboSHAKE128(M=`00`^0, D=`1F`, 10032), last 32 bytes:
`A3 B9 B0 38 59 00 CE 76 1F 22 AE D5 48 E7 54 DA
10 A5 24 2D 62 E8 C6 58 E3 F3 A9 23 A7 55 56 07`
TurboSHAKE128(M=ptn(17**0 bytes), D=`1F`, 32):
`55 CE DD 6F 60 AF 7B B2 9A 40 42 AE 83 2E F3 F5
8D B7 29 9F 89 3E BB 92 47 24 7D 85 69 58 DA A9`
TurboSHAKE128(M=ptn(17**1 bytes), D=`1F`, 32):
`9C 97 D0 36 A3 BA C8 19 DB 70 ED E0 CA 55 4E C6
E4 C2 A1 A4 FF BF D9 EC 26 9C A6 A1 11 16 12 33`
TurboSHAKE128(M=ptn(17**2 bytes), D=`1F`, 32):
`96 C7 7C 27 9E 01 26 F7 FC 07 C9 B0 7F 5C DA E1
E0 BE 60 BD BE 10 62 00 40 E7 5D 72 23 A6 24 D2`
TurboSHAKE128(M=ptn(17**3 bytes), D=`1F`, 32):
`D4 97 6E B5 6B CF 11 85 20 58 2B 70 9F 73 E1 D6
85 3E 00 1F DA F8 0E 1B 13 E0 D0 59 9D 5F B3 72`
TurboSHAKE128(M=ptn(17**4 bytes), D=`1F`, 32):
`DA 67 C7 03 9E 98 BF 53 0C F7 A3 78 30 C6 66 4E
14 CB AB 7F 54 0F 58 40 3B 1B 82 95 13 18 EE 5C`
TurboSHAKE128(M=ptn(17**5 bytes), D=`1F`, 32):
`B9 7A 90 6F BF 83 EF 7C 81 25 17 AB F3 B2 D0 AE
A0 C4 F6 03 18 CE 11 CF 10 39 25 12 7F 59 EE CD`
TurboSHAKE128(M=ptn(17**6 bytes), D=`1F`, 32):
`35 CD 49 4A DE DE D2 F2 52 39 AF 09 A7 B8 EF 0C
4D 1C A4 FE 2D 1A C3 70 FA 63 21 6F E7 B4 C2 B1`
TurboSHAKE128(M=`FF FF FF`, D=`01`, 32):
`BF 32 3F 94 04 94 E8 8E E1 C5 40 FE 66 0B E8 A0
C9 3F 43 D1 5E C0 06 99 84 62 FA 99 4E ED 5D AB`
TurboSHAKE128(M=`FF`, D=`06`, 32):
`8E C9 C6 64 65 ED 0D 4A 6C 35 D1 35 06 71 8D 68
7A 25 CB 05 C7 4C CA 1E 42 50 1A BD 83 87 4A 67`
TurboSHAKE128(M=`FF FF FF`, D=`07`, 32):
`B6 58 57 60 01 CA D9 B1 E5 F3 99 A9 F7 77 23 BB
A0 54 58 04 2D 68 20 6F 72 52 68 2D BA 36 63 ED`
TurboSHAKE128(M=`FF FF FF FF FF FF FF`, D=`0B`, 32):
`8D EE AA 1A EC 47 CC EE 56 9F 65 9C 21 DF A8 E1
12 DB 3C EE 37 B1 81 78 B2 AC D8 05 B7 99 CC 37`
TurboSHAKE128(M=`FF`, D=`30`, 32):
`55 31 22 E2 13 5E 36 3C 32 92 BE D2 C6 42 1F A2
32 BA B0 3D AA 07 C7 D6 63 66 03 28 65 06 32 5B`
TurboSHAKE128(M=`FF FF FF`, D=`7F`, 32):
`16 27 4C C6 56 D4 4C EF D4 22 39 5D 0F 90 53 BD
A6 D2 8E 12 2A BA 15 C7 65 E5 AD 0E 6E AF 26 F9`
]]></artwork></figure></t>
<t><figure><artwork><![CDATA[
TurboSHAKE256(M=`00`^0, D=`1F`, 64):
`36 7A 32 9D AF EA 87 1C 78 02 EC 67 F9 05 AE 13
C5 76 95 DC 2C 66 63 C6 10 35 F5 9A 18 F8 E7 DB
11 ED C0 E1 2E 91 EA 60 EB 6B 32 DF 06 DD 7F 00
2F BA FA BB 6E 13 EC 1C C2 0D 99 55 47 60 0D B0`
TurboSHAKE256(M=`00`^0, D=`1F`, 10032), last 32 bytes:
`AB EF A1 16 30 C6 61 26 92 49 74 26 85 EC 08 2F
20 72 65 DC CF 2F 43 53 4E 9C 61 BA 0C 9D 1D 75`
TurboSHAKE256(M=ptn(17**0 bytes), D=`1F`, 64):
`3E 17 12 F9 28 F8 EA F1 05 46 32 B2 AA 0A 24 6E
D8 B0 C3 78 72 8F 60 BC 97 04 10 15 5C 28 82 0E
90 CC 90 D8 A3 00 6A A2 37 2C 5C 5E A1 76 B0 68
2B F2 2B AE 74 67 AC 94 F7 4D 43 D3 9B 04 82 E2`
TurboSHAKE256(M=ptn(17**1 bytes), D=`1F`, 64):
`B3 BA B0 30 0E 6A 19 1F BE 61 37 93 98 35 92 35
78 79 4E A5 48 43 F5 01 10 90 FA 2F 37 80 A9 E5
CB 22 C5 9D 78 B4 0A 0F BF F9 E6 72 C0 FB E0 97
0B D2 C8 45 09 1C 60 44 D6 87 05 4D A5 D8 E9 C7`
TurboSHAKE256(M=ptn(17**2 bytes), D=`1F`, 64):
`66 B8 10 DB 8E 90 78 04 24 C0 84 73 72 FD C9 57
10 88 2F DE 31 C6 DF 75 BE B9 D4 CD 93 05 CF CA
E3 5E 7B 83 E8 B7 E6 EB 4B 78 60 58 80 11 63 16
FE 2C 07 8A 09 B9 4A D7 B8 21 3C 0A 73 8B 65 C0`
TurboSHAKE256(M=ptn(17**3 bytes), D=`1F`, 64):
`C7 4E BC 91 9A 5B 3B 0D D1 22 81 85 BA 02 D2 9E
F4 42 D6 9D 3D 42 76 A9 3E FE 0B F9 A1 6A 7D C0
CD 4E AB AD AB 8C D7 A5 ED D9 66 95 F5 D3 60 AB
E0 9E 2C 65 11 A3 EC 39 7D A3 B7 6B 9E 16 74 FB`
TurboSHAKE256(M=ptn(17**4 bytes), D=`1F`, 64):
`02 CC 3A 88 97 E6 F4 F6 CC B6 FD 46 63 1B 1F 52
07 B6 6C 6D E9 C7 B5 5B 2D 1A 23 13 4A 17 0A FD
AC 23 4E AB A9 A7 7C FF 88 C1 F0 20 B7 37 24 61
8C 56 87 B3 62 C4 30 B2 48 CD 38 64 7F 84 8A 1D`
TurboSHAKE256(M=ptn(17**5 bytes), D=`1F`, 64):
`AD D5 3B 06 54 3E 58 4B 58 23 F6 26 99 6A EE 50
FE 45 ED 15 F2 02 43 A7 16 54 85 AC B4 AA 76 B4
FF DA 75 CE DF 6D 8C DC 95 C3 32 BD 56 F4 B9 86
B5 8B B1 7D 17 78 BF C1 B1 A9 75 45 CD F4 EC 9F`
TurboSHAKE256(M=ptn(17**6 bytes), D=`1F`, 64):
`9E 11 BC 59 C2 4E 73 99 3C 14 84 EC 66 35 8E F7
1D B7 4A EF D8 4E 12 3F 78 00 BA 9C 48 53 E0 2C
FE 70 1D 9E 6B B7 65 A3 04 F0 DC 34 A4 EE 3B A8
2C 41 0F 0D A7 0E 86 BF BD 90 EA 87 7C 2D 61 04`
TurboSHAKE256(M=`FF FF FF`, D=`01`, 64):
`D2 1C 6F BB F5 87 FA 22 82 F2 9A EA 62 01 75 FB
02 57 41 3A F7 8A 0B 1B 2A 87 41 9C E0 31 D9 33
AE 7A 4D 38 33 27 A8 A1 76 41 A3 4F 8A 1D 10 03
AD 7D A6 B7 2D BA 84 BB 62 FE F2 8F 62 F1 24 24`
TurboSHAKE256(M=`FF`, D=`06`, 64):
`73 8D 7B 4E 37 D1 8B 7F 22 AD 1B 53 13 E3 57 E3
DD 7D 07 05 6A 26 A3 03 C4 33 FA 35 33 45 52 80
F4 F5 A7 D4 F7 00 EF B4 37 FE 6D 28 14 05 E0 7B
E3 2A 0A 97 2E 22 E6 3A DC 1B 09 0D AE FE 00 4B`
TurboSHAKE256(M=`FF FF FF`, D=`07`, 64):
`18 B3 B5 B7 06 1C 2E 67 C1 75 3A 00 E6 AD 7E D7
BA 1C 90 6C F9 3E FB 70 92 EA F2 7F BE EB B7 55
AE 6E 29 24 93 C1 10 E4 8D 26 00 28 49 2B 8E 09
B5 50 06 12 B8 F2 57 89 85 DE D5 35 7D 00 EC 67`
TurboSHAKE256(M=`FF FF FF FF FF FF FF`, D=`0B`, 64):
`BB 36 76 49 51 EC 97 E9 D8 5F 7E E9 A6 7A 77 18
FC 00 5C F4 25 56 BE 79 CE 12 C0 BD E5 0E 57 36
D6 63 2B 0D 0D FB 20 2D 1B BB 8F FE 3D D7 4C B0
08 34 FA 75 6C B0 34 71 BA B1 3A 1E 2C 16 B3 C0`
TurboSHAKE256(M=`FF`, D=`30`, 64):
`F3 FE 12 87 3D 34 BC BB 2E 60 87 79 D6 B7 0E 7F
86 BE C7 E9 0B F1 13 CB D4 FD D0 C4 E2 F4 62 5E
14 8D D7 EE 1A 52 77 6C F7 7F 24 05 14 D9 CC FC
3B 5D DA B8 EE 25 5E 39 EE 38 90 72 96 2C 11 1A`
TurboSHAKE256(M=`FF FF FF`, D=`7F`, 64):
`AB E5 69 C1 F7 7E C3 40 F0 27 05 E7 D3 7C 9A B7
E1 55 51 6E 4A 6A 15 00 21 D7 0B 6F AC 0B B4 0C
06 9F 9A 98 28 A0 D5 75 CD 99 F9 BA E4 35 AB 1A
CF 7E D9 11 0B A9 7C E0 38 8D 07 4B AC 76 87 76`
]]></artwork></figure></t>
<t><figure><artwork><![CDATA[ KT128(M=`00`^0, C=`00`^0, 32):
`1A C2 D4 50 FC 3B 42 05 D1 9D A7 BF CA 1B 37 51
3C 08 03 57 7A C7 16 7F 06 FE 2C E1 F0 EF 39 E5`
KT128(M=`00`^0, C=`00`^0, 64):
`1A C2 D4 50 FC 3B 42 05 D1 9D A7 BF CA 1B 37 51
3C 08 03 57 7A C7 16 7F 06 FE 2C E1 F0 EF 39 E5
42 69 C0 56 B8 C8 2E 48 27 60 38 B6 D2 92 96 6C
C0 7A 3D 46 45 27 2E 31 FF 38 50 81 39 EB 0A 71`
KT128(M=`00`^0, C=`00`^0, 10032), last 32 bytes:
`E8 DC 56 36 42 F7 22 8C 84 68 4C 89 84 05 D3 A8
34 79 91 58 C0 79 B1 28 80 27 7A 1D 28 E2 FF 6D`
KT128(M=ptn(1 bytes), C=`00`^0, 32):
`2B DA 92 45 0E 8B 14 7F 8A 7C B6 29 E7 84 A0 58
EF CA 7C F7 D8 21 8E 02 D3 45 DF AA 65 24 4A 1F`
KT128(M=ptn(17 bytes), C=`00`^0, 32):
`6B F7 5F A2 23 91 98 DB 47 72 E3 64 78 F8 E1 9B
0F 37 12 05 F6 A9 A9 3A 27 3F 51 DF 37 12 28 88`
KT128(M=ptn(17**2 bytes), C=`00`^0, 32):
`0C 31 5E BC DE DB F6 14 26 DE 7D CF 8F B7 25 D1
E7 46 75 D7 F5 32 7A 50 67 F3 67 B1 08 EC B6 7C`
KT128(M=ptn(17**3 bytes), C=`00`^0, 32):
`CB 55 2E 2E C7 7D 99 10 70 1D 57 8B 45 7D DF 77
2C 12 E3 22 E4 EE 7F E4 17 F9 2C 75 8F 0D 59 D0`
KT128(M=ptn(17**4 bytes), C=`00`^0, 32):
`87 01 04 5E 22 20 53 45 FF 4D DA 05 55 5C BB 5C
3A F1 A7 71 C2 B8 9B AE F3 7D B4 3D 99 98 B9 FE`
KT128(M=ptn(17**5 bytes), C=`00`^0, 32):
`84 4D 61 09 33 B1 B9 96 3C BD EB 5A E3 B6 B0 5C
C7 CB D6 7C EE DF 88 3E B6 78 A0 A8 E0 37 16 82`
KT128(M=ptn(17**6 bytes), C=`00`^0, 32):
`3C 39 07 82 A8 A4 E8 9F A6 36 7F 72 FE AA F1 32
55 C8 D9 58 78 48 1D 3C D8 CE 85 F5 8E 88 0A F8`
KT128(`00`^0, C=ptn(1 bytes), 32):
`FA B6 58 DB 63 E9 4A 24 61 88 BF 7A F6 9A 13 30
45 F4 6E E9 84 C5 6E 3C 33 28 CA AF 1A A1 A5 83`
KT128(`FF`, C=ptn(41 bytes), 32):
`D8 48 C5 06 8C ED 73 6F 44 62 15 9B 98 67 FD 4C
20 B8 08 AC C3 D5 BC 48 E0 B0 6B A0 A3 76 2E C4`
KT128(`FF FF FF`, C=ptn(41**2 bytes), 32):
`C3 89 E5 00 9A E5 71 20 85 4C 2E 8C 64 67 0A C0
13 58 CF 4C 1B AF 89 44 7A 72 42 34 DC 7C ED 74`
KT128(`FF FF FF FF FF FF FF`, C=ptn(41**3 bytes), 32):
`75 D2 F8 6A 2E 64 45 66 72 6B 4F BC FC 56 57 B9
DB CF 07 0C 7B 0D CA 06 45 0A B2 91 D7 44 3B CF`
KT128(M=ptn(8191 bytes), C=`00`^0, 32):
`1B 57 76 36 F7 23 64 3E 99 0C C7 D6 A6 59 83 74
36 FD 6A 10 36 26 60 0E B8 30 1C D1 DB E5 53 D6`
KT128(M=ptn(8192 bytes), C=`00`^0, 32):
`48 F2 56 F6 77 2F 9E DF B6 A8 B6 61 EC 92 DC 93
B9 5E BD 05 A0 8A 17 B3 9A E3 49 08 70 C9 26 C3`
KT128(M=ptn(8192 bytes), C=ptn(8189 bytes), 32):
`3E D1 2F 70 FB 05 DD B5 86 89 51 0A B3 E4 D2 3C
6C 60 33 84 9A A0 1E 1D 8C 22 0A 29 7F ED CD 0B`
KT128(M=ptn(8192 bytes), C=ptn(8190 bytes), 32):
`6A 7C 1B 6A 5C D0 D8 C9 CA 94 3A 4A 21 6C C6 46
04 55 9A 2E A4 5F 78 57 0A 15 25 3D 67 BA 00 AE`]]></artwork></figure></t>
<t><figure><artwork><![CDATA[ KT256(M=`00`^0, C=`00`^0, 64):
`B2 3D 2E 9C EA 9F 49 04 E0 2B EC 06 81 7F C1 0C
E3 8C E8 E9 3E F4 C8 9E 65 37 07 6A F8 64 64 04
E3 E8 B6 81 07 B8 83 3A 5D 30 49 0A A3 34 82 35
3F D4 AD C7 14 8E CB 78 28 55 00 3A AE BD E4 A9`
KT256(M=`00`^0, C=`00`^0, 128):
`B2 3D 2E 9C EA 9F 49 04 E0 2B EC 06 81 7F C1 0C
E3 8C E8 E9 3E F4 C8 9E 65 37 07 6A F8 64 64 04
E3 E8 B6 81 07 B8 83 3A 5D 30 49 0A A3 34 82 35
3F D4 AD C7 14 8E CB 78 28 55 00 3A AE BD E4 A9
B0 92 53 19 D8 EA 1E 12 1A 60 98 21 EC 19 EF EA
89 E6 D0 8D AE E1 66 2B 69 C8 40 28 9F 18 8B A8
60 F5 57 60 B6 1F 82 11 4C 03 0C 97 E5 17 84 49
60 8C CD 2C D2 D9 19 FC 78 29 FF 69 93 1A C4 D0`
KT256(M=`00`^0, C=`00`^0, 10064), last 64 bytes:
`AD 4A 1D 71 8C F9 50 50 67 09 A4 C3 33 96 13 9B
44 49 04 1F C7 9A 05 D6 8D A3 5F 1E 45 35 22 E0
56 C6 4F E9 49 58 E7 08 5F 29 64 88 82 59 B9 93
27 52 F3 CC D8 55 28 8E FE E5 FC BB 8B 56 30 69`
KT256(M=ptn(1 bytes), C=`00`^0, 64):
`0D 00 5A 19 40 85 36 02 17 12 8C F1 7F 91 E1 F7
13 14 EF A5 56 45 39 D4 44 91 2E 34 37 EF A1 7F
82 DB 6F 6F FE 76 E7 81 EA A0 68 BC E0 1F 2B BF
81 EA CB 98 3D 72 30 F2 FB 02 83 4A 21 B1 DD D0`
KT256(M=ptn(17 bytes), C=`00`^0, 64):
`1B A3 C0 2B 1F C5 14 47 4F 06 C8 97 99 78 A9 05
6C 84 83 F4 A1 B6 3D 0D CC EF E3 A2 8A 2F 32 3E
1C DC CA 40 EB F0 06 AC 76 EF 03 97 15 23 46 83
7B 12 77 D3 E7 FA A9 C9 65 3B 19 07 50 98 52 7B`
KT256(M=ptn(17**2 bytes), C=`00`^0, 64):
`DE 8C CB C6 3E 0F 13 3E BB 44 16 81 4D 4C 66 F6
91 BB F8 B6 A6 1E C0 A7 70 0F 83 6B 08 6C B0 29
D5 4F 12 AC 71 59 47 2C 72 DB 11 8C 35 B4 E6 AA
21 3C 65 62 CA AA 9D CC 51 89 59 E6 9B 10 F3 BA`
KT256(M=ptn(17**3 bytes), C=`00`^0, 64):
`64 7E FB 49 FE 9D 71 75 00 17 1B 41 E7 F1 1B D4
91 54 44 43 20 99 97 CE 1C 25 30 D1 5E B1 FF BB
59 89 35 EF 95 45 28 FF C1 52 B1 E4 D7 31 EE 26
83 68 06 74 36 5C D1 91 D5 62 BA E7 53 B8 4A A5`
KT256(M=ptn(17**4 bytes), C=`00`^0, 64):
`B0 62 75 D2 84 CD 1C F2 05 BC BE 57 DC CD 3E C1
FF 66 86 E3 ED 15 77 63 83 E1 F2 FA 3C 6A C8 F0
8B F8 A1 62 82 9D B1 A4 4B 2A 43 FF 83 DD 89 C3
CF 1C EB 61 ED E6 59 76 6D 5C CF 81 7A 62 BA 8D`
KT256(M=ptn(17**5 bytes), C=`00`^0, 64):
`94 73 83 1D 76 A4 C7 BF 77 AC E4 5B 59 F1 45 8B
16 73 D6 4B CD 87 7A 7C 66 B2 66 4A A6 DD 14 9E
60 EA B7 1B 5C 2B AB 85 8C 07 4D ED 81 DD CE 2B
40 22 B5 21 59 35 C0 D4 D1 9B F5 11 AE EB 07 72`
KT256(M=ptn(17**6 bytes), C=`00`^0, 64):
`06 52 B7 40 D7 8C 5E 1F 7C 8D CC 17 77 09 73 82
76 8B 7F F3 8F 9A 7A 20 F2 9F 41 3B B1 B3 04 5B
31 A5 57 8F 56 8F 91 1E 09 CF 44 74 6D A8 42 24
A5 26 6E 96 A4 A5 35 E8 71 32 4E 4F 9C 70 04 DA`
KT256(`00`^0, C=ptn(1 bytes), 64):
`92 80 F5 CC 39 B5 4A 5A 59 4E C6 3D E0 BB 99 37
1E 46 09 D4 4B F8 45 C2 F5 B8 C3 16 D7 2B 15 98
11 F7 48 F2 3E 3F AB BE 5C 32 26 EC 96 C6 21 86
DF 2D 33 E9 DF 74 C5 06 9C EE CB B4 DD 10 EF F6`
KT256(`FF`, C=ptn(41 bytes), 64):
`47 EF 96 DD 61 6F 20 09 37 AA 78 47 E3 4E C2 FE
AE 80 87 E3 76 1D C0 F8 C1 A1 54 F5 1D C9 CC F8
45 D7 AD BC E5 7F F6 4B 63 97 22 C6 A1 67 2E 3B
F5 37 2D 87 E0 0A FF 89 BE 97 24 07 56 99 88 53`
KT256(`FF FF FF`, C=ptn(41**2 bytes), 64):
`3B 48 66 7A 50 51 C5 96 6C 53 C5 D4 2B 95 DE 45
1E 05 58 4E 78 06 E2 FB 76 5E DA 95 90 74 17 2C
B4 38 A9 E9 1D DE 33 7C 98 E9 C4 1B ED 94 C4 E0
AE F4 31 D0 B6 4E F2 32 4F 79 32 CA A6 F5 49 69`
KT256(`FF FF FF FF FF FF FF`, C=ptn(41**3 bytes), 64):
`E0 91 1C C0 00 25 E1 54 08 31 E2 66 D9 4A DD 9B
98 71 21 42 B8 0D 26 29 E6 43 AA C4 EF AF 5A 3A
30 A8 8C BF 4A C2 A9 1A 24 32 74 30 54 FB CC 98
97 67 0E 86 BA 8C EC 2F C2 AC E9 C9 66 36 97 24`
KT256(M=ptn(8191 bytes), C=`00`^0, 64):
`30 81 43 4D 93 A4 10 8D 8D 8A 33 05 B8 96 82 CE
BE DC 7C A4 EA 8A 3C E8 69 FB B7 3C BE 4A 58 EE
F6 F2 4D E3 8F FC 17 05 14 C7 0E 7A B2 D0 1F 03
81 26 16 E8 63 D7 69 AF B3 75 31 93 BA 04 5B 20`
KT256(M=ptn(8192 bytes), C=`00`^0, 64):
`C6 EE 8E 2A D3 20 0C 01 8A C8 7A AA 03 1C DA C2
21 21 B4 12 D0 7D C6 E0 DC CB B5 34 23 74 7E 9A
1C 18 83 4D 99 DF 59 6C F0 CF 4B 8D FA FB 7B F0
2D 13 9D 0C 90 35 72 5A DC 1A 01 B7 23 0A 41 FA`
KT256(M=ptn(8192 bytes), C=ptn(8189 bytes), 64):
`74 E4 78 79 F1 0A 9C 5D 11 BD 2D A7 E1 94 FE 57
E8 63 78 BF 3C 3F 74 48 EF F3 C5 76 A0 F1 8C 5C
AA E0 99 99 79 51 20 90 A7 F3 48 AF 42 60 D4 DE
3C 37 F1 EC AF 8D 2C 2C 96 C1 D1 6C 64 B1 24 96`
KT256(M=ptn(8192 bytes), C=ptn(8190 bytes), 64):
`F4 B5 90 8B 92 9F FE 01 E0 F7 9E C2 F2 12 43 D4
1A 39 6B 2E 73 03 A6 AF 1D 63 99 CD 6C 7A 0A 2D
D7 C4 F6 07 E8 27 7F 9C 9B 1C B4 AB 9D DC 59 D4
B9 2D 1F C7 55 84 41 F1 83 2C 32 79 A4 24 1B 8B`]]></artwork></figure></t>
</section>
<section anchor="IANA" title="IANA Considerations">
<t>IANA has allocated entries k12-256 and k12-512 in the Named Information Hash Algorithm Registry.
IANA is requested to update the references to refer to the final version of this document.</t>
<t>The rest of this paragraph should be kept in the final document:
In the Named Information Hash Algorithm Registry, k12-256 refers to the hash function obtained
by evaluating KT128 on the input message with default C (the empty string) and L = 32 bytes (256 bits).
Similarly, k12-512 refers to the hash function obtained by evaluating KT256 on the input message with
default C (the empty string) and L = 64 bytes (512 bits).</t>
<t>IANA is requested to update the COSE Algorithms registry by adding the following entries:</t>
<t><figure><artwork><![CDATA[
+---------------+-------+-------------------+
| Name | Value | Description |
+---------------+-------+-------------------+
| TurboSHAKE128 | | TurboSHAKE128 XOF |
| | | |
| TurboSHAKE256 | | TurboSHAKE256 XOF |
| | | |
| KT128 | | KT128 XOF |
| | | |
| KT256 | | KT256 XOF |
+---------------+-------+-------------------+]]></artwork>
</figure></t>
<t>The Value is left to be assigned by the IANA expert.
The other fields (Capabilities, Change Controller, Reference and Recommended)
are left at the discretion of the IANA expert.</t>
</section>
<section anchor="Security" title="Security Considerations">
<t>This document is meant to serve as a stable reference and an
implementation guide for the KangarooTwelve and TurboSHAKE eXtendable Output Functions.
The security assurance of these functions relies on the cryptanalysis of reduced-round versions of Keccak and they have the same claimed security strength as their corresponding SHAKE functions.</t>
<t><figure><artwork><![CDATA[
+-------------------------------+
| security claim |
+-----------------+-------------------------------+
| TurboSHAKE128 | 128 bits (same as SHAKE128) |
| | |
| KT128 | 128 bits (same as SHAKE128) |
| | |
| TurboSHAKE256 | 256 bits (same as SHAKE256) |
| | |
| KT256 | 256 bits (same as SHAKE256) |
+-----------------+-------------------------------+]]></artwork>
</figure></t>
<t>
To be more precise, KT128 is made of two layers:
<list style="symbols">
<t>The inner function TurboSHAKE128.
The security assurance of this layer relies on cryptanalysis.
The TurboSHAKE128 function is exactly Keccak[r=1344, c=256] (as in SHAKE128)
reduced to 12 rounds.
Any cryptanalysis of reduced-round Keccak is also cryptanalysis of reduced-round TurboSHAKE128
(provided the number of rounds attacked is not higher than 12).</t>