-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathquoridor.py
928 lines (797 loc) · 30.9 KB
/
quoridor.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
import json
from dataclasses import dataclass, asdict
from typing import (
Tuple,
Set,
List,
Dict,
)
import environment
import numpy
SPEAK = 0
EARLY_STOPPING_POSITION = 90
class BootstrapValue:
def predict(self, features):
# :features ~ [(0, 1, ...), ...]
values = []
for feature_set in features:
if feature_set[0] < 0.5:
your_distance = (8.0 - feature_set[4]) / 8.0
opponent_distance = feature_set[6] / 8.0
else:
your_distance = feature_set[6] / 8.0
opponent_distance = (8.0 - feature_set[4]) / 8.0
value = (opponent_distance - your_distance) * .25
values.append(value)
return values
def update_blocked_passages(
blocked_passages,
x,
y,
is_vertical,
adding=True,
):
'''
Update :blocked_passages given that player places/removes a :is_vertical wall at (:x, :y).
'''
if adding:
operation = blocked_passages.add
else:
operation = blocked_passages.remove
if is_vertical:
operation((x, y, x + 1, y))
operation((x + 1, y, x, y))
operation((x, y + 1, x + 1, y + 1))
operation((x + 1, y + 1, x, y + 1))
else:
operation((x, y, x, y + 1))
operation((x, y + 1, x, y))
operation((x + 1, y, x + 1, y + 1))
operation((x + 1, y + 1, x + 1, y))
def update_wall_states(
vertical_wall_states,
horizontal_wall_states,
x,
y,
is_vertical,
):
'''
Update :vertical_wall_states and :horizontal_wall_states given that player places a :is_vertical
wall at (:x, :y).
'''
if is_vertical:
vertical_wall_states[x][y] = 1
horizontal_wall_states[x][y] = 2
if y + 1 <= 7:
vertical_wall_states[x][y + 1] = 2
if y - 1 >= 0:
vertical_wall_states[x][y - 1] = 2
else:
horizontal_wall_states[x][y] = 1
vertical_wall_states[x][y] = 2
if x - 1 >= 0:
horizontal_wall_states[x - 1][y] = 2
if x + 1 <= 7:
horizontal_wall_states[x + 1][y] = 2
def victory_distance(initial_x, initial_y, blocked_passages, winning_row):
visited = [[False] * 9 for _ in range(9)]
visited[initial_x][initial_y] = True
queue = [(initial_x, initial_y, 0)]
# Biased towards going north/south first. Note that the last element is what
# will be searched first for the dfs, so for player 1 north is the last
# element to bias heading in that direction.
adjacent_deltas = ((0, 1), (1, 0), (-1, 0), (0, -1))
if winning_row == 8:
adjacent_deltas = ((0, -1), (-1, 0), (1, 0), (0, 1))
while queue:
x, y, distance = queue.pop()
if y == winning_row:
return distance
adjacent_distance = distance + 1 # XXX: better to just add in loop?
for dx, dy in adjacent_deltas:
adjacent_x = x + dx
adjacent_y = y + dy
if visited[adjacent_x][adjacent_y]:
continue
# XXX: better to store adjacent local vars?
if (x, y, adjacent_x, adjacent_y) in blocked_passages:
continue
queue.append((adjacent_x, adjacent_y, adjacent_distance))
visited[adjacent_x][adjacent_y] = True
return -1
def victory_distance_heavy(initial_x, initial_y, blocked_passages, winning_row):
# Doesn't take into account jumps. How could you?
visited = {(initial_x, initial_y): 0}
queue = [(initial_x, initial_y, 0)]
# Biased towards going north/south first. Note that the last element is what
# will be searched first for the dfs, so for player 1 north is the last
# element to bias heading in that direction.
adjacent_deltas = ((0, 1), (1, 0), (-1, 0), (0, -1))
if winning_row == 8:
adjacent_deltas = ((0, -1), (-1, 0), (1, 0), (0, 1))
while queue:
x, y, distance = queue.pop()
if y == winning_row:
return distance, x, y, visited
adjacent_distance = distance + 1
for dx, dy in adjacent_deltas:
adjacent_x = x + dx
adjacent_y = y + dy
if (adjacent_x, adjacent_y) in visited:
continue
if (x, y, adjacent_x, adjacent_y) in blocked_passages:
continue
queue.append((adjacent_x, adjacent_y, adjacent_distance))
visited[(adjacent_x, adjacent_y)] = adjacent_distance
return -1, -1, -1, visited
def victory_distance_lighter(initial_x, initial_y, blocked_passages, winning_row):
# Doesn't take into account jumps. How could you?
visited = {(initial_x, initial_y): True}
queue = [(initial_x, initial_y, 0)]
# Biased towards going north/south first. Note that the last element is what
# will be searched first for the dfs, so for player 1 north is the last
# element to bias heading in that direction.
adjacent_deltas = ((0, 1), (1, 0), (-1, 0), (0, -1))
if winning_row == 8:
adjacent_deltas = ((0, -1), (-1, 0), (1, 0), (0, 1))
while queue:
x, y, distance = queue.pop()
if y == winning_row:
return distance
adjacent_distance = distance + 1
for dx, dy in adjacent_deltas:
adjacent_x = x + dx
adjacent_y = y + dy
if (adjacent_x, adjacent_y) in visited:
continue
if (x, y, adjacent_x, adjacent_y) in blocked_passages:
continue
queue.append((adjacent_x, adjacent_y, adjacent_distance))
visited[(adjacent_x, adjacent_y)] = True
return -1
def victory_path(initial_x, initial_y, final_x, final_y, visited, blocked_passages):
adjacent_deltas = ((0, 1), (1, 0), (-1, 0), (0, -1))
x = final_x
y = final_y
distance = visited[(x, y)]
path_reversed = [(x, y, distance)]
while True:
x, y, distance = path_reversed[-1]
if (x == initial_x) and (y == initial_y):
break
# Find traversable, adjacent square with next shortest distance to
# origin.
distance_shortest = 100
x_shortest = None
y_shortest = None
for dx, dy in adjacent_deltas:
distance_next = visited.get((x + dx, y + dy), 100)
if distance_next < distance_shortest:
if (x, y, x + dx, y + dy) in blocked_passages:
continue
distance_shortest = distance_next
x_shortest = x + dx
y_shortest = y + dy
# print(x_shortest, y_shortest, distance_shortest)
path_reversed.append((x_shortest, y_shortest, distance_shortest))
return path_reversed
def initial_blocked_passages():
# Fill with edges of board
blocked_passages = set()
for x in range(9):
blocked_passages.add((x, -1, x, 0))
blocked_passages.add((x, 0, x, -1))
blocked_passages.add((x, 8, x, 9))
blocked_passages.add((x, 9, x, 8))
for y in range(9):
blocked_passages.add((-1, y, 0, y))
blocked_passages.add((0, y, -1, y))
blocked_passages.add((8, y, 9, y))
blocked_passages.add((9, y, 8, y))
return blocked_passages
def find_trap_walls(state):
trap_walls = set() # (x, y, is_vert)
# Traps are impossible if there aren't at least 2 walls placed.
if state.p1_wall_count + state.p2_wall_count > 18:
return trap_walls
distance, final_x, final_y, visited = victory_distance_heavy(state.p1_x, state.p1_y, state.blocked_passages, 8)
vic_path_reversed = victory_path(state.p1_x, state.p1_y, final_x, final_y, visited, state.blocked_passages)
update_trap_walls(
vic_path_reversed,
trap_walls,
state.blocked_passages,
state.vertical_wall_states,
state.horizontal_wall_states,
8,
)
distance, final_x, final_y, visited = victory_distance_heavy(state.p2_x, state.p2_y, state.blocked_passages, 0)
vic_path_reversed = victory_path(state.p2_x, state.p2_y, final_x, final_y, visited, state.blocked_passages)
update_trap_walls(
vic_path_reversed,
trap_walls,
state.blocked_passages,
state.vertical_wall_states,
state.horizontal_wall_states,
0,
)
return trap_walls
def update_trap_walls(
path_reversed,
trap_walls,
blocked_passages,
vertical_wall_states,
horizontal_wall_states,
winning_row,
):
'''
For every placeable wall that could obstruct this path, check if placing that wall would prevent
the player from getting to victory row.
'''
stop_index = len(path_reversed) - 1
leading_cell_index = 0
while leading_cell_index < stop_index:
leading_x, leading_y, _ = path_reversed[leading_cell_index]
lagging_x, lagging_y, _ = path_reversed[leading_cell_index + 1]
for wall_x, wall_y, is_vertical in blocking_walls(
lagging_x,
lagging_y,
leading_x,
leading_y
):
# blocking_walls doesn't bounds check walls that aren't possible. Do that here.
if (wall_x > 7) or (wall_y > 7):
continue
# Can be placed?
if is_vertical:
if vertical_wall_states[wall_x][wall_y] != 0:
continue
else:
if horizontal_wall_states[wall_x][wall_y] != 0:
continue
# If we placed it, would it trap the player?
# - Temporarilly update the blocked_passages that would occur if we added the wall.
update_blocked_passages(blocked_passages, wall_x, wall_y, is_vertical, adding=True)
if victory_distance_lighter(lagging_x, lagging_y, blocked_passages, winning_row) == -1:
trap_walls.add((wall_x, wall_y, is_vertical))
update_blocked_passages(blocked_passages, wall_x, wall_y, is_vertical, adding=False)
leading_cell_index += 1
def blocking_walls(x1, y1, x2, y2):
'''
Given passage from (x1, y1) to (x2, y2), which walls could block that passage?
'''
if y2 > y1:
return (x1 - 1, y1, False), (x1, y1, False)
elif x2 < x1:
return (x2, y1 - 1, True), (x2, y2, True)
elif x2 > x1:
return (x1, y1 - 1, True), (x1, y1, True)
else:
return (x1 - 1, y2, False), (x1, y2, False)
@dataclass
class State:
whose_move: int # {0, 1} # Note: 0-based!
position_num: int
p1_x: int
p1_y: int
p2_x: int
p2_y: int
p1_wall_count: int
p2_wall_count: int
blocked_passages: Set[Tuple] # set([(pos1_x, pos1_y, pos2_x, pos2_y])
vertical_wall_states: List[List[int]] # [8][8]int, [pos_x][pos_y]wall_state
horizontal_wall_states: List[List[int]] # [8][8]int, [pos_x][pos_y]wall_state
def marshall(self, format="dict"):
# XXX: Convert back
self.blocked_passages = tuple(self.blocked_passages)
data = asdict(self)
if format == "dict":
return data
elif format == "json":
return json.dumps(data)
else:
raise KeyError(f"Unknown format: {format}")
@classmethod
def unmarshall(cls, data, format="dict"):
if format == "dict":
instance = cls(**data)
instance.blocked_passages = set(tuple(x) for x in instance.blocked_passages)
return instance
def generate_features(state, agents) -> numpy.array:
# :agents ~ [0, 1]
# :agents ~ [0, 1, 2]
# :agents ~ [0, 1, 5]
# Which player's pov, which player is moving, is POV's player moving?
features = numpy.zeros((2, 137), dtype=numpy.float32)
agent_0_features = features[0]
agent_1_features = features[1]
# Agent-specific features
agent_0_features[0] = 0.0
agent_1_features[0] = 1.0
# Agent-shared features
agent_0_features[1] = state.whose_move
agent_0_features[2] = state.position_num
agent_0_features[3] = state.p1_x
agent_0_features[4] = state.p1_y
agent_0_features[5] = state.p2_x
agent_0_features[6] = state.p2_y
agent_0_features[7] = state.p1_wall_count
agent_0_features[8] = state.p2_wall_count
i = 9
for x in (0, 1, 2, 3, 4, 5, 6, 7):
for y in (0, 1, 2, 3, 4, 5, 6, 7):
if state.vertical_wall_states[x][y] == 1:
agent_0_features[i] = 1
if state.horizontal_wall_states[x][y] == 1:
agent_0_features[i + 64] = 1
i += 1
# Copy over agent-shared features to other agent.
agent_1_features[1:137] = agent_0_features[1:137]
return features
@dataclass
class Environment(environment.Environment):
action_info: List[Tuple] = None
move_action_info: List[Tuple] = None
jump_action_info: List[Tuple] = None
vertical_wall_action_info: List[Tuple] = None
horizontal_wall_action_info: List[Tuple] = None
action_name_by_id: Dict[int, str] = None
def __post_init__(self):
super().__post_init__()
# (movement_direction, wall_x, wall_y, is_vertical)
# - :movement_direction is [0-7], see move_player
self.action_info = []
_, self.action_name_by_id = self.build_action_maps()
self.move_action_info = [
(0, 0, 1),
(1, 1, 0),
(2, 0, -1),
(3, -1, 0),
]
self.jump_action_info = [
(4, 0, 1),
(5, 1, 0),
(6, 0, -1),
(7, -1, 0),
]
for info in self.move_action_info + self.jump_action_info:
self.action_info.append((info[0], None, None, None))
# Order the wall actions by y-axis
# - Hopefully models will make use of that...
self.vertical_wall_action_info = []
self.horizontal_wall_action_info = []
i = 8
for y in range(8):
for x in range(8):
self.vertical_wall_action_info.append((i, x, y))
self.action_info.append((None, x, y, True))
i += 1
self.horizontal_wall_action_info.append((i, x, y))
self.action_info.append((None, x, y, False))
i += 1
# Cache action_ids by wall info for human input
self.action_id_by_wall_info = {} # (x, y, is_vertical):action_id
for i, info in enumerate(self.action_info):
# Skip movements
if info[0] is not None:
continue
self.action_id_by_wall_info[(info[1], info[2], info[3])] = i
def get_name(self):
return "quoridor"
def initial_state(self):
return State(
whose_move=0,
position_num=0,
p1_x=4,
p1_y=0,
p2_x=4,
p2_y=8,
p1_wall_count=10,
p2_wall_count=10,
blocked_passages=initial_blocked_passages(),
vertical_wall_states=[[0] * 8 for _ in range(8)],
horizontal_wall_states=[[0] * 8 for _ in range(8)],
)
def move_player(self, state, movement_direction):
'''
:movement_direction [0, 3] are up/right/down/left simple movements
:movement_direction [4, 7] are up/right/down/left jumps
'''
if state.whose_move == 0:
mover_x = state.p1_x
mover_y = state.p1_y
opponent_x = state.p2_x
opponent_y = state.p2_y
else:
mover_x = state.p2_x
mover_y = state.p2_y
opponent_x = state.p1_x
opponent_y = state.p1_y
# Simple movements (up, right, down, left)
if movement_direction == 0:
mover_y += 1
elif movement_direction == 1:
mover_x += 1
elif movement_direction == 2:
mover_y -= 1
elif movement_direction == 3:
mover_x -= 1
# Jumps (up, right, down, left)
elif movement_direction == 4:
mover_x = opponent_x
mover_y = opponent_y + 1
elif movement_direction == 5:
mover_x = opponent_x + 1
mover_y = opponent_y
elif movement_direction == 6:
mover_x = opponent_x
mover_y = opponent_y - 1
elif movement_direction == 7:
mover_x = opponent_x - 1
mover_y = opponent_y
else:
raise KeyError(f"Unknown movement_direction: {movement_direction}")
return mover_x, mover_y
def transition_state(self, state, action_id):
movement_direction, wall_pos_x, wall_pos_y, is_vertical = self.action_info[action_id]
blocked_passages = set(state.blocked_passages)
vertical_wall_states = [x[:] for x in state.vertical_wall_states]
horizontal_wall_states = [x[:] for x in state.horizontal_wall_states]
# Player is moving/jumping
if movement_direction is not None:
if state.whose_move == 0:
p1_x, p1_y = self.move_player(state, movement_direction)
p2_x = state.p2_x
p2_y = state.p2_y
else:
p1_x = state.p1_x
p1_y = state.p1_y
p2_x, p2_y = self.move_player(state, movement_direction)
# XXX: Technically you don't have to make a copy of the passages/walls.
return State(
whose_move=1 if state.whose_move == 0 else 0,
position_num=state.position_num + 1,
p1_x=p1_x,
p1_y=p1_y,
p2_x=p2_x,
p2_y=p2_y,
p1_wall_count=state.p1_wall_count,
p2_wall_count=state.p2_wall_count,
blocked_passages=blocked_passages,
vertical_wall_states=vertical_wall_states,
horizontal_wall_states=horizontal_wall_states,
)
# Player is placing a wall
else:
update_blocked_passages(blocked_passages, wall_pos_x, wall_pos_y, is_vertical)
update_wall_states(
vertical_wall_states,
horizontal_wall_states,
wall_pos_x,
wall_pos_y,
is_vertical,
)
return State(
whose_move=1 if state.whose_move == 0 else 0,
position_num=state.position_num + 1,
p1_x=state.p1_x,
p1_y=state.p1_y,
p2_x=state.p2_x,
p2_y=state.p2_y,
p1_wall_count=state.p1_wall_count - 1 if state.whose_move == 0 else state.p1_wall_count,
p2_wall_count=state.p2_wall_count - 1 if state.whose_move == 1 else state.p2_wall_count,
blocked_passages=blocked_passages,
vertical_wall_states=vertical_wall_states,
horizontal_wall_states=horizontal_wall_states,
)
def is_terminal(self, state):
if state.p1_y >= 8:
return True
elif state.p2_y <= 0:
return True
if state.position_num == EARLY_STOPPING_POSITION:
return True
return False
def build_action_maps(self):
action_id_by_name = {
"u": 0,
"r": 1,
"d": 2,
"l": 3,
"ju": 4,
"jr": 5,
"jd": 6,
"jl": 7,
}
i = 8
for y in range(8):
for x in range(8):
name = f"{x}{y}v"
action_id_by_name[name] = i
i += 1
name = f"{x}{y}h"
action_id_by_name[name] = i
i += 1
# Make inverse
action_name_by_id = {v: k for k, v in action_id_by_name.items()}
return action_id_by_name, action_name_by_id
def translate_human_input(self, human_input):
# u, uj, 89v
input_cleaned = human_input.strip().lower()
# Movements
if input_cleaned == "u":
return 0
elif input_cleaned == "r":
return 1
elif input_cleaned == "d":
return 2
elif input_cleaned == "l":
return 3
# Jumps
elif input_cleaned == "ju":
return 4
elif input_cleaned == "jr":
return 5
elif input_cleaned == "jd":
return 6
elif input_cleaned == "jl":
return 7
# Walls
else:
x = int(input_cleaned[0])
y = int(input_cleaned[1])
is_vertical = True if input_cleaned[2] == "v" else False
return self.action_id_by_wall_info[(x, y, is_vertical)]
def all_possible_actions(self):
# 4 moves, 4 jumps, 64 vertical walls, 64 horizontal
# XXX: assert this matches up with other actions when you modify it else
# the policy model will be messed up without you knowing.
return tuple(range(8 + 64 + 64))
def enumerate_actions(self, state):
actions = []
if state.whose_move == 0:
mover_x = state.p1_x
mover_y = state.p1_y
mover_wall_count = state.p1_wall_count
opponent_x = state.p2_x
opponent_y = state.p2_y
else:
mover_x = state.p2_x
mover_y = state.p2_y
mover_wall_count = state.p2_wall_count
opponent_x = state.p1_x
opponent_y = state.p1_y
# Player movements
# - Player can move into adjacent cells not obstructed by walls or opponent
# - If adjacent cell is occupied by opponent player, player can't move to that position,
# but instead can move to where the opponent player could move to (excluding player's
# position).
for move_action_id, mdx, mdy in self.move_action_info:
adjacent_x = mover_x + mdx
adjacent_y = mover_y + mdy
# Can't move there, passage is blocked.
if (mover_x, mover_y, adjacent_x, adjacent_y) in state.blocked_passages:
continue
# Jump over opponent case.
# - Can jump anywhere opponent could move, except where mover is.
if (adjacent_x == opponent_x) and (adjacent_y == opponent_y):
for jump_action_id, jdx, jdy in self.jump_action_info:
if (mover_x == (opponent_x + jdx)) and (mover_y == (opponent_y + jdy)):
continue
if (opponent_x, opponent_y, opponent_x + jdx, opponent_y + jdy) in state.blocked_passages:
continue
actions.append(jump_action_id)
# Move up/right/down/left case
else:
actions.append(move_action_id)
# Can't place any walls if you won't have any
if mover_wall_count <= 0:
return actions
# Player can place walls
# - Player can never place a wall that traps itself or opponent so that they aren't able to
# get to their respective goal rows.
trap_walls = find_trap_walls(state)
for action_id, wall_x, wall_y in self.vertical_wall_action_info:
if state.vertical_wall_states[wall_x][wall_y] == 0:
if (wall_x, wall_y, True) in trap_walls:
continue
actions.append(action_id)
for action_id, wall_x, wall_y in self.horizontal_wall_action_info:
if state.horizontal_wall_states[wall_x][wall_y] == 0:
if (wall_x, wall_y, False) in trap_walls:
continue
actions.append(action_id)
return actions
def rewards(self, state):
if state.p1_y >= 8:
return [1, -1]
elif state.p2_y <= 0:
return [-1, 1]
return [0, 0]
def text_display(self, state):
'''
· · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · 8
· · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · 7
· · · · · · ·---○---· · · · · · · · ·
· · · · │ ● · · · · · 6
· · · · · · · · ○ · · · · · · · · · ·
· · · · │ · · · · · 5
· · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · 4
· · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · 3
· · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · 2
· · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · 1
· · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · 0
· · · · · · · · · · · · · · · · · · ·
0 1 2 3 4 5 6 7 8
'''
board_cells = [[" "] * 19 for _ in range(37)]
for x in range(37):
for y in range(19):
if x % 2 != 0:
continue
if y % 2 == 0:
board_cells[x][y] = "·"
else:
if x % 4 == 0:
board_cells[x][y] = "·"
# Players
board_cells[(4 * state.p1_x) + 2][(2 * state.p1_y) + 1] = "[bold green]●[/bold green]"
board_cells[(4 * state.p2_x) + 2][(2 * state.p2_y) + 1] = "[bold red]●[/bold red]"
# Walls
for x in range(8):
for y in range(8):
dot_x = (4 * x) + 4
dot_y = (2 * y) + 2
if state.horizontal_wall_states[x][y] == 1:
board_cells[dot_x][dot_y] = "[bold yellow]◉[/bold yellow]"
for dc in (-3, -2, -1, 1, 2, 3):
wx = dot_x + dc
wy = dot_y
board_cells[wx][wy] = "[bold yellow]-[/bold yellow]"
if state.vertical_wall_states[x][y] == 1:
board_cells[dot_x][dot_y] = "[bold yellow]◉[/bold yellow]"
for dc in (-1, 1):
wx = dot_x
wy = dot_y + dc
board_cells[wx][wy] = "[bold yellow]│[/bold yellow]"
# Convert to string
rows = []
y_label = 8
for y in range(18, -1, -1):
row_string = ""
for x in range(37):
row_string += board_cells[x][y]
if (y % 2) == 1:
row_string += f" {y_label}"
if y_label == 8:
row_string += f" [bold red]# Walls:[/bold red] [white]{state.p2_wall_count}[/white]"
if y_label == 0:
row_string += f" [bold green]# Walls:[/bold green] [white]{state.p1_wall_count}[/white]"
y_label -= 1
rows.append(row_string)
x_labels = [" "] * 37
for x in range(9):
x_labels[(4 * x) + 2] = f"{x}"
rows.append("".join(x_labels))
return "\n".join(rows)
def inspect_victory_path():
initial_x = 4
initial_y = 0
blocked_passages = initial_blocked_passages()
blocked_passages.add((4, 1, 4, 2))
blocked_passages.add((4, 2, 4, 1))
distance, final_x, final_y, visited = victory_distance_heavy(initial_x, initial_y, blocked_passages, 8)
vic_path = victory_path(initial_x, initial_y, final_x, final_y, visited)
print(vic_path)
def inspect_trap_walls():
blocked_passages = initial_blocked_passages()
vertical_wall_states = [[0] * 8 for _ in range(8)]
horizontal_wall_states = [[0] * 8 for _ in range(8)]
state = State(
whose_move=0,
p1_x=4,
p1_y=0,
p2_x=4,
p2_y=8,
p1_wall_count=10,
p2_wall_count=10,
blocked_passages=blocked_passages,
vertical_wall_states=vertical_wall_states,
horizontal_wall_states=horizontal_wall_states,
)
# Place wall at (3/4, 0) to see if it finds the trap at (3/4, 1)
update_blocked_passages(state.blocked_passages, 3, 0, True)
update_wall_states(state.vertical_wall_states, state.horizontal_wall_states, 3, 0, True)
update_blocked_passages(state.blocked_passages, 4, 0, True)
update_wall_states(state.vertical_wall_states, state.horizontal_wall_states, 4, 0, True)
blocked_before = set(state.blocked_passages)
tw = find_trap_walls(state)
assert blocked_passages == blocked_before, "finding trap walls modified it"
print("traps:", tw)
from rich import print as rprint # noqa
env = Environment()
rprint(env.text_display(state))
def inspect_environment():
import random
from rich import print as rprint # noqa
env = Environment()
# Generate a bunch of random states to "fuzz out" any bugs
for i in range(500):
state = env.initial_state()
history = []
for a in range(50):
try:
actions = env.enumerate_actions(state)
chosen_action = random.choice(actions)
history.append(chosen_action)
state = env.transition_state(state, chosen_action)
if env.is_terminal(state):
break
except Exception as e:
global SPEAK
SPEAK = 1
failed_state = state
print("\nfail", e)
print("replaying")
state = env.initial_state()
for a in history:
print("\nBefore move")
rprint(env.text_display(state))
possible_actions = env.enumerate_actions(state)
for pa in possible_actions:
print('pa', env.action_info[pa])
state = env.transition_state(state, a)
print("FINAL STATE")
rprint(env.text_display(failed_state))
raise
rprint(env.text_display(state))
def inspect_environment_bug():
import random # noqa
from rich import print as rprint # noqa
env = Environment()
state = env.initial_state()
actions_by_wall_info = {}
for i, info in enumerate(env.action_info):
if info[0] is not None:
continue
actions_by_wall_info[(info[1], info[2], info[3])] = i
walls = [
(1, 0, True),
# (3, 0, True), # Trap wall
(5, 0, True),
(0, 2, True),
(4, 2, True),
(2, 3, True),
(7, 3, True),
(3, 4, True),
(1, 7, True),
(4, 7, True),
(7, 0, False),
(3, 1, False),
(5, 1, False),
(6, 3, False),
(0, 4, False),
(1, 5, False),
(7, 5, False),
(1, 6, False),
(5, 7, False),
]
actions = [0] # move p1 up once
for wall in walls:
actions.append(actions_by_wall_info[wall])
for action in actions:
state = env.transition_state(state, action)
rprint(env.text_display(state))
tw_action_id = actions_by_wall_info[(3, 0, True)]
next_actions = env.enumerate_actions(state)
print("Trap wall action id", tw_action_id)
print("trap wall in allowable actions?", tw_action_id in next_actions)
# inspect_trap_walls()
# inspect_environment()
# inspect_environment_bug()