-
Notifications
You must be signed in to change notification settings - Fork 225
/
Copy pathtrain_nsq_ale.py
162 lines (141 loc) · 6.12 KB
/
train_nsq_ale.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
import argparse
import os
import random
# This prevents numpy from using multiple threads
os.environ['OMP_NUM_THREADS'] = '1' # NOQA
from chainer import links as L
from gym import spaces
import numpy as np
import chainerrl
from chainerrl.action_value import DiscreteActionValue
from chainerrl.agents import nsq
from chainerrl import experiments
from chainerrl import explorers
from chainerrl import links
from chainerrl import misc
from chainerrl.optimizers import rmsprop_async
from chainerrl.wrappers import atari_wrappers
def main():
parser = argparse.ArgumentParser()
parser.add_argument('processes', type=int)
parser.add_argument('--env', type=str, default='BreakoutNoFrameskip-v4')
parser.add_argument('--seed', type=int, default=0,
help='Random seed [0, 2 ** 31)')
parser.add_argument('--lr', type=float, default=7e-4)
parser.add_argument('--steps', type=int, default=8 * 10 ** 7)
parser.add_argument('--max-frames', type=int,
default=30 * 60 * 60, # 30 minutes with 60 fps
help='Maximum number of frames for each episode.')
parser.add_argument('--final-exploration-frames',
type=int, default=4 * 10 ** 6)
parser.add_argument('--outdir', type=str, default='results',
help='Directory path to save output files.'
' If it does not exist, it will be created.')
parser.add_argument('--profile', action='store_true')
parser.add_argument('--eval-interval', type=int, default=10 ** 6)
parser.add_argument('--eval-n-runs', type=int, default=10)
parser.add_argument('--demo', action='store_true', default=False)
parser.add_argument('--load', type=str, default=None)
parser.add_argument('--logging-level', type=int, default=20,
help='Logging level. 10:DEBUG, 20:INFO etc.')
parser.add_argument('--render', action='store_true', default=False,
help='Render env states in a GUI window.')
parser.add_argument('--monitor', action='store_true', default=False,
help='Monitor env. Videos and additional information'
' are saved as output files.')
args = parser.parse_args()
import logging
logging.basicConfig(level=args.logging_level)
# Set a random seed used in ChainerRL.
# If you use more than one processes, the results will be no longer
# deterministic even with the same random seed.
misc.set_random_seed(args.seed)
# Set different random seeds for different subprocesses.
# If seed=0 and processes=4, subprocess seeds are [0, 1, 2, 3].
# If seed=1 and processes=4, subprocess seeds are [4, 5, 6, 7].
process_seeds = np.arange(args.processes) + args.seed * args.processes
assert process_seeds.max() < 2 ** 31
args.outdir = experiments.prepare_output_dir(args, args.outdir)
print('Output files are saved in {}'.format(args.outdir))
def make_env(process_idx, test):
# Use different random seeds for train and test envs
process_seed = process_seeds[process_idx]
env_seed = 2 ** 31 - 1 - process_seed if test else process_seed
env = atari_wrappers.wrap_deepmind(
atari_wrappers.make_atari(args.env, max_frames=args.max_frames),
episode_life=not test,
clip_rewards=not test)
env.seed(int(env_seed))
if test:
# Randomize actions like epsilon-greedy in evaluation as well
env = chainerrl.wrappers.RandomizeAction(env, 0.05)
if args.monitor:
env = chainerrl.wrappers.Monitor(
env, args.outdir,
mode='evaluation' if test else 'training')
if args.render:
env = chainerrl.wrappers.Render(env)
return env
sample_env = make_env(0, test=False)
action_space = sample_env.action_space
assert isinstance(action_space, spaces.Discrete)
# Define a model and its optimizer
q_func = links.Sequence(
links.NIPSDQNHead(),
L.Linear(256, action_space.n),
DiscreteActionValue)
opt = rmsprop_async.RMSpropAsync(lr=args.lr, eps=1e-1, alpha=0.99)
opt.setup(q_func)
def phi(x):
# Feature extractor
return np.asarray(x, dtype=np.float32) / 255
# Make process-specific agents to diversify exploration
def make_agent(process_idx):
# Random epsilon assignment described in the original paper
rand = random.random()
if rand < 0.4:
epsilon_target = 0.1
elif rand < 0.7:
epsilon_target = 0.01
else:
epsilon_target = 0.5
explorer = explorers.LinearDecayEpsilonGreedy(
1, epsilon_target, args.final_exploration_frames,
action_space.sample)
# Suppress the explorer logger
explorer.logger.setLevel(logging.INFO)
return nsq.NSQ(q_func, opt, t_max=5, gamma=0.99,
i_target=40000,
explorer=explorer, phi=phi)
if args.demo:
env = make_env(0, True)
agent = make_agent(0)
eval_stats = experiments.eval_performance(
env=env,
agent=agent,
n_steps=None,
n_episodes=args.eval_n_runs)
print('n_runs: {} mean: {} median: {} stdev {}'.format(
args.eval_n_runs, eval_stats['mean'], eval_stats['median'],
eval_stats['stdev']))
else:
# Linearly decay the learning rate to zero
def lr_setter(env, agent, value):
agent.optimizer.lr = value
lr_decay_hook = experiments.LinearInterpolationHook(
args.steps, args.lr, 0, lr_setter)
experiments.train_agent_async(
outdir=args.outdir,
processes=args.processes,
make_env=make_env,
make_agent=make_agent,
profile=args.profile,
steps=args.steps,
eval_n_steps=None,
eval_n_episodes=args.eval_n_runs,
eval_interval=args.eval_interval,
global_step_hooks=[lr_decay_hook],
save_best_so_far_agent=False,
)
if __name__ == '__main__':
main()