This repository has been archived by the owner on Apr 18, 2020. It is now read-only.
forked from IBM/matrix-capsules-with-em-routing
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathem_routing.py
533 lines (459 loc) · 18.5 KB
/
em_routing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
"""
License: Apache 2.0
Author: Ashley Gritzman
E-mail: ashley.gritzman@za.ibm.com
Credits:
1. Jonathan Hui's blog, "Understanding Matrix capsules with EM Routing
(Based on Hinton's Capsule Networks)"
https://jhui.github.io/2017/11/14/Matrix-Capsules-with-EM-routing-
Capsule-Network/
2. Questions and answers on OpenReview, "Matrix capsules with EM routing"
https://openreview.net/forum?id=HJWLfGWRb
3. Suofei Zhang's implementation on GitHub, "Matrix-Capsules-EM-Tensorflow"
https://github.com/www0wwwjs1/Matrix-Capsules-EM-Tensorflow
4. Guang Yang's implementation on GitHub, "CapsulesEM"
https://github.com/gyang274/capsulesEM
"""
# Public modules
import tensorflow as tf
import tensorflow.contrib.slim as slim
import numpy as np
# My modules
from config import FLAGS
import utils as utl
# Get logger that has already been created in config.py
import daiquiri
logger = daiquiri.getLogger(__name__)
def em_routing(votes_ij, activations_i, batch_size, spatial_routing_matrix):
"""The EM routing between input capsules (i) and output capsules (j).
See Hinton et al. "Matrix Capsules with EM Routing" for detailed description
of EM routing.
Author:
Ashley Gritzman 19/10/2018
Definitions:
N -> number of samples in batch
OH -> output height
OW -> output width
kh -> kernel height
kw -> kernel width
kk -> kh * kw
i -> number of input capsules, also called "child_caps"
o -> number of output capsules, also called "parent_caps"
child_space -> spatial dimensions of input capsule layer i
parent_space -> spatial dimensions of output capsule layer j
n_channels -> number of channels in pose matrix (usually 4x4=16)
Args:
votes_ij:
votes from capsules in layer i to capsules in layer j
For conv layer:
(N*OH*OW, kh*kw*i, o, 4x4)
(64*6*6, 9*8, 32, 16)
For FC layer:
The kernel dimensions are equal to the spatial dimensions of the input
layer i, and the spatial dimensions of the output layer j are 1x1.
(N*1*1, child_space*child_space*i, o, 4x4)
(64, 4*4*16, 5, 16)
activations_i:
activations of capsules in layer i (L)
(N*OH*OW, kh*kw*i, 1)
(64*6*6, 9*8, 1)
batch_size:
spatial_routing_matrix:
Returns:
poses_j:
poses of capsules in layer j (L+1)
(N, OH, OW, o, 4x4)
(64, 6, 6, 32, 16)
activations_j:
activations of capsules in layer j (L+1)
(N, OH, OW, o, 1)
(64, 6, 6, 32, 1)
"""
#----- Dimensions -----#
# Get dimensions needed to do conversions
N = batch_size
votes_shape = votes_ij.get_shape().as_list()
OH = np.sqrt(int(votes_shape[0]) / N)
OH = int(OH)
OW = np.sqrt(int(votes_shape[0]) / N)
OW = int(OW)
kh_kw_i = int(votes_shape[1])
o = int(votes_shape[2])
n_channels = int(votes_shape[3])
# Calculate kernel size by adding up column of spatial routing matrix
# Do this before conventing the spatial_routing_matrix to tf
kk = int(np.sum(spatial_routing_matrix[:,0]))
parent_caps = o
child_caps = int(kh_kw_i/kk)
rt_mat_shape = spatial_routing_matrix.shape
child_space_2 = rt_mat_shape[0]
child_space = int(np.sqrt(child_space_2))
parent_space_2 = rt_mat_shape[1]
parent_space = int(np.sqrt(parent_space_2))
#----- Reshape Inputs -----#
# conv: (N*OH*OW, kh*kw*i, o, 4x4) -> (N, OH, OW, kh*kw*i, o, 4x4)
# FC: (N, child_space*child_space*i, o, 4x4) -> (N, 1, 1, child_space*child_space*i, output_classes, 4x4)
votes_ij = tf.reshape(votes_ij, [N, OH, OW, kh_kw_i, o, n_channels])
# (N*OH*OW, kh*kw*i, 1) -> (N, OH, OW, kh*kw*i, o, n_channels)
# (24, 6, 6, 288, 1, 1)
activations_i = tf.reshape(activations_i, [N, OH, OW, kh_kw_i, 1, 1])
#----- Betas -----#
"""
# Initialization from Jonathan Hui [1]:
beta_v_hui = tf.get_variable(
name='beta_v',
shape=[1, 1, 1, o],
dtype=tf.float32,
initializer=tf.contrib.layers.xavier_initializer())
beta_a_hui = tf.get_variable(
name='beta_a',
shape=[1, 1, 1, o],
dtype=tf.float32,
initializer=tf.contrib.layers.xavier_initializer())
# AG 21/11/2018:
# Tried to find std according to Hinton's comments on OpenReview
# https://openreview.net/forum?id=HJWLfGWRb¬eId=r1lQjCAChm
# Hinton: "We used truncated_normal_initializer and set the std so that at the
# start of training half of the capsules in each layer are active and half
# inactive (for the Primary Capsule layer where the activation is not computed
# through routing we use different std for activation convolution weights &
# for pose parameter convolution weights)."
#
# std beta_v seems to control the spread of activations
# To try and achieve what Hinton said about half active and half not active,
# I change the std values and check the histogram/distributions in
# Tensorboard
# to try and get a good spread across all values. I couldn't get this working
# nicely.
beta_v_hui = slim.model_variable(
name='beta_v',
shape=[1, 1, 1, 1, o, 1],
dtype=tf.float32,
initializer=tf.truncated_normal_initializer(mean=0.0, stddev=10.0))
"""
beta_a = slim.model_variable(
name='beta_a',
shape=[1, 1, 1, 1, o, 1],
dtype=tf.float32,
initializer=tf.truncated_normal_initializer(mean=-1000.0, stddev=500.0))
# AG 04/10/2018: using slim.variable to create instead of tf.get_variable so
# that they get correctly placed on the CPU instead of GPU in the multi-gpu
# version.
# One beta per output capsule type
# (1, 1, 1, 1, 32, 1)
# (N, OH, OH, i, o, n_channels)
beta_v = slim.model_variable(
name='beta_v',
shape=[1, 1, 1, 1, o, 1],
dtype=tf.float32,
initializer=tf.contrib.layers.xavier_initializer(),
regularizer=None)
"""
beta_a = slim.model_variable(
name='beta_a',
shape=[1, 1, 1, 1, o, 1],
dtype=tf.float32,
initializer=tf.contrib.layers.xavier_initializer(),
regularizer=None)
"""
with tf.variable_scope("em_routing") as scope:
# Initialise routing assignments
# rr (1, 6, 6, 9, 8, 16)
# (1, parent_space, parent_space, kk, child_caps, parent_caps)
rr = utl.init_rr(spatial_routing_matrix, child_caps, parent_caps)
# Need to reshape (1, 6, 6, 9, 8, 16) -> (1, 6, 6, 9*8, 16, 1)
rr = np.reshape(
rr,
[1, parent_space, parent_space, kk*child_caps, parent_caps, 1])
# Convert rr from np to tf
rr = tf.constant(rr, dtype=tf.float32)
for it in range(FLAGS.iter_routing):
# AG 17/09/2018: modified schedule for inverse_temperature (lambda) based
# on Hinton's response to questions on OpenReview.net:
# https://openreview.net/forum?id=HJWLfGWRb
# "the formula we used for lambda is:
# lambda = final_lambda * (1 - tf.pow(0.95, tf.cast(i + 1, tf.float32)))
# where 'i' is the routing iteration (range is 0-2). Final_lambda is set
# to 0.01."
# final_lambda = 0.01
final_lambda = FLAGS.final_lambda
inverse_temperature = (final_lambda *
(1 - tf.pow(0.95, tf.cast(it + 1, tf.float32))))
# AG 26/06/2018: added var_j
activations_j, mean_j, stdv_j, var_j = m_step(
rr,
votes_ij,
activations_i,
beta_v, beta_a,
inverse_temperature=inverse_temperature)
# We skip the e_step call in the last iteration because we only need to
# return the a_j and the mean from the m_stp in the last iteration to
# compute the output capsule activation and pose matrices
if it < FLAGS.iter_routing - 1:
rr = e_step(votes_ij,
activations_j,
mean_j,
stdv_j,
var_j,
spatial_routing_matrix)
# pose: (N, OH, OW, o, 4 x 4) via squeeze mean_j (24, 6, 6, 32, 16)
poses_j = tf.squeeze(mean_j, axis=-3, name="poses")
# activation: (N, OH, OW, o, 1) via squeeze o_activation is
# [24, 6, 6, 32, 1]
activations_j = tf.squeeze(activations_j, axis=-3, name="activations")
return poses_j, activations_j
def m_step(rr, votes, activations_i, beta_v, beta_a, inverse_temperature):
"""The m-step in EM routing between input capsules (i) and output capsules
(j).
Compute the activations of the output capsules (j), and the Gaussians for the
pose of the output capsules (j).
See Hinton et al. "Matrix Capsules with EM Routing" for detailed description
of m-step.
Author:
Ashley Gritzman 19/10/2018
Args:
rr:
assignment weights between capsules in layer i and layer j
(N, OH, OW, kh*kw*i, o, 1)
(64, 6, 6, 9*8, 16, 1)
votes_ij:
votes from capsules in layer i to capsules in layer j
For conv layer:
(N, OH, OW, kh*kw*i, o, 4x4)
(64, 6, 6, 9*8, 32, 16)
For FC layer:
The kernel dimensions are equal to the spatial dimensions of the input
layer i, and
the spatial dimensions of the output layer j are 1x1.
(N, 1, 1, child_space*child_space*i, output_classes, 4x4)
(64, 1, 1, 4*4*16, 5, 16)
activations_i:
activations of capsules in layer i (L)
(N, OH, OW, kh*kw*i, o, n_channels)
(24, 6, 6, 288, 1, 1)
beta_v:
Trainable parameters in computing cost
(1, 1, 1, 1, 32, 1)
beta_a:
Trainable parameters in computing next level activation
(1, 1, 1, 1, 32, 1)
inverse_temperature: lambda, increase over each iteration by the caller
Returns:
activations_j:
activations of capsules in layer j (L+1)
(N, OH, OW, 1, o, 1)
(64, 6, 6, 1, 32, 1)
mean_j:
mean of each channel in capsules of layer j (L+1)
(N, OH, OW, 1, o, n_channels)
(24, 6, 6, 1, 32, 16)
stdv_j:
standard deviation of each channel in capsules of layer j (L+1)
(N, OH, OW, 1, o, n_channels)
(24, 6, 6, 1, 32, 16)
var_j:
variance of each channel in capsules of layer j (L+1)
(N, OH, OW, 1, o, n_channels)
(24, 6, 6, 1, 32, 16)
"""
with tf.variable_scope("m_step") as scope:
rr_prime = rr * activations_i
rr_prime = tf.identity(rr_prime, name="rr_prime")
# rr_prime_sum: sum over all input capsule i
rr_prime_sum = tf.reduce_sum(rr_prime,
axis=-3,
keepdims=True,
name='rr_prime_sum')
# AG 13/12/2018: normalise amount of information
# The amount of information given to parent capsules is very different for
# the final "class-caps" layer. Since all the spatial capsules give output
# to just a few class caps, they receive a lot more information than the
# convolutional layers. So in order for lambda and beta_v/beta_a settings to
# apply to this layer, we must normalise the amount of information.
# activ from convcaps1 to convcaps2 (64*5*5, 144, 16, 1) 144/16 = 9 info
# (N*OH*OW, kh*kw*i, o, 1)
# activ from convcaps2 to classcaps (64, 1, 1, 400, 5, 1) 400/5 = 80 info
# (N, 1, 1, IH*IW*i, n_classes, 1)
child_caps = float(rr_prime.get_shape().as_list()[-3])
parent_caps = float(rr_prime.get_shape().as_list()[-2])
ratio_child_to_parent = child_caps/parent_caps
layer_norm_factor = 100/ratio_child_to_parent
# logger.info("ratio_child_to_parent: {}".format(ratio_child_to_parent))
# rr_prime_sum = rr_prime_sum/ratio_child_to_parent
# mean_j: (24, 6, 6, 1, 32, 16)
mean_j_numerator = tf.reduce_sum(rr_prime * votes,
axis=-3,
keepdims=True,
name="mean_j_numerator")
mean_j = tf.div(mean_j_numerator,
rr_prime_sum + FLAGS.epsilon,
name="mean_j")
#----- AG 26/06/2018 START -----#
# Use variance instead of standard deviation, because the sqrt seems to
# cause NaN gradients during backprop.
# See original implementation from Suofei below
var_j_numerator = tf.reduce_sum(rr_prime * tf.square(votes - mean_j),
axis=-3,
keepdims=True,
name="var_j_numerator")
var_j = tf.div(var_j_numerator,
rr_prime_sum + FLAGS.epsilon,
name="var_j")
# Set the minimum variance (note: variance should always be positive)
# This should allow me to remove the FLAGS.epsilon safety from log and div
# that follow
#var_j = tf.maximum(var_j, FLAGS.epsilon)
#var_j = var_j + FLAGS.epsilon
###################
#var_j = var_j + 1e-5
var_j = tf.identity(var_j + 1e-9, name="var_j_epsilon")
###################
# Compute the stdv, but it shouldn't actually be used anywhere
# stdv_j = tf.sqrt(var_j)
stdv_j = None
######## layer_norm_factor
cost_j_h = (beta_v + 0.5*tf.log(var_j)) * rr_prime_sum * layer_norm_factor
cost_j_h = tf.identity(cost_j_h, name="cost_j_h")
# ----- END ----- #
"""
# Original from Suofei (reference [3] at top)
# stdv_j: (24, 6, 6, 1, 32, 16)
stdv_j = tf.sqrt(
tf.reduce_sum(
rr_prime * tf.square(votes - mean_j), axis=-3, keepdims=True
) / rr_prime_sum,
name="stdv_j"
)
# cost_j_h: (24, 6, 6, 1, 32, 16)
cost_j_h = (beta_v + tf.log(stdv_j + FLAGS.epsilon)) * rr_prime_sum
"""
# cost_j: (24, 6, 6, 1, 32, 1)
# activations_j_cost = (24, 6, 6, 1, 32, 1)
# yg: This is done for numeric stability.
# It is the relative variance between each channel determined which one
# should activate.
cost_j = tf.reduce_sum(cost_j_h, axis=-1, keepdims=True, name="cost_j")
#cost_j_mean = tf.reduce_mean(cost_j, axis=-2, keepdims=True)
#cost_j_stdv = tf.sqrt(
# tf.reduce_sum(
# tf.square(cost_j - cost_j_mean), axis=-2, keepdims=True
# ) / cost_j.get_shape().as_list()[-2]
#)
# AG 17/09/2018: trying to remove normalisation
# activations_j_cost = beta_a + (cost_j_mean - cost_j) / (cost_j_stdv)
activations_j_cost = tf.identity(beta_a - cost_j,
name="activations_j_cost")
# (24, 6, 6, 1, 32, 1)
activations_j = tf.sigmoid(inverse_temperature * activations_j_cost,
name="sigmoid")
# AG 26/06/2018: added var_j to return
return activations_j, mean_j, stdv_j, var_j
# AG 26/06/2018: added var_j
def e_step(votes_ij, activations_j, mean_j, stdv_j, var_j, spatial_routing_matrix):
"""The e-step in EM routing between input capsules (i) and output capsules (j).
Update the assignment weights using in routung. The output capsules (j)
compete for the input capsules (i).
See Hinton et al. "Matrix Capsules with EM Routing" for detailed description
of e-step.
Author:
Ashley Gritzman 19/10/2018
Args:
votes_ij:
votes from capsules in layer i to capsules in layer j
For conv layer:
(N, OH, OW, kh*kw*i, o, 4x4)
(64, 6, 6, 9*8, 32, 16)
For FC layer:
The kernel dimensions are equal to the spatial dimensions of the input
layer i, and the spatial dimensions of the output layer j are 1x1.
(N, 1, 1, child_space*child_space*i, output_classes, 4x4)
(64, 1, 1, 4*4*16, 5, 16)
activations_j:
activations of capsules in layer j (L+1)
(N, OH, OW, 1, o, 1)
(64, 6, 6, 1, 32, 1)
mean_j:
mean of each channel in capsules of layer j (L+1)
(N, OH, OW, 1, o, n_channels)
(24, 6, 6, 1, 32, 16)
stdv_j:
standard deviation of each channel in capsules of layer j (L+1)
(N, OH, OW, 1, o, n_channels)
(24, 6, 6, 1, 32, 16)
var_j:
variance of each channel in capsules of layer j (L+1)
(N, OH, OW, 1, o, n_channels)
(24, 6, 6, 1, 32, 16)
spatial_routing_matrix: ???
Returns:
rr:
assignment weights between capsules in layer i and layer j
(N, OH, OW, kh*kw*i, o, 1)
(64, 6, 6, 9*8, 16, 1)
"""
with tf.variable_scope("e_step") as scope:
# AG 26/06/2018: changed stdv_j to var_j
o_p_unit0 = - tf.reduce_sum(
tf.square(votes_ij - mean_j, name="num") / (2 * var_j),
axis=-1,
keepdims=True,
name="o_p_unit0")
o_p_unit2 = - 0.5 * tf.reduce_sum(
tf.log(2*np.pi * var_j),
axis=-1,
keepdims=True,
name="o_p_unit2"
)
# (24, 6, 6, 288, 32, 1)
o_p = o_p_unit0 + o_p_unit2
zz = tf.log(activations_j + FLAGS.epsilon) + o_p
# AG 13/11/2018: New implementation of normalising across parents
#----- Start -----#
zz_shape = zz.get_shape().as_list()
batch_size = zz_shape[0]
parent_space = zz_shape[1]
kh_kw_i = zz_shape[3]
parent_caps = zz_shape[4]
kk = int(np.sum(spatial_routing_matrix[:,0]))
child_caps = int(kh_kw_i / kk)
zz = tf.reshape(zz, [batch_size, parent_space, parent_space, kk,
child_caps, parent_caps])
"""
# In un-log space
with tf.variable_scope("to_sparse_unlog") as scope:
zz_unlog = tf.exp(zz)
#zz_sparse_unlog = utl.to_sparse(zz_unlog, spatial_routing_matrix,
# sparse_filler=1e-15)
zz_sparse_unlog = utl.to_sparse(
zz_unlog,
spatial_routing_matrix,
sparse_filler=0.0)
# maybe this value should be even lower 1e-15
zz_sparse_log = tf.log(zz_sparse_unlog + 1e-15)
zz_sparse = zz_sparse_log
"""
# In log space
with tf.variable_scope("to_sparse_log") as scope:
# Fill the sparse matrix with the smallest value in zz (at least -100)
sparse_filler = tf.minimum(tf.reduce_min(zz), -100)
# sparse_filler = -100
zz_sparse = utl.to_sparse(
zz,
spatial_routing_matrix,
sparse_filler=sparse_filler)
with tf.variable_scope("softmax_across_parents") as scope:
rr_sparse = utl.softmax_across_parents(zz_sparse, spatial_routing_matrix)
with tf.variable_scope("to_dense") as scope:
rr_dense = utl.to_dense(rr_sparse, spatial_routing_matrix)
rr = tf.reshape(
rr_dense,
[batch_size, parent_space, parent_space, kh_kw_i, parent_caps, 1])
#----- End -----#
# AG 02/11/2018
# In response to a question on OpenReview, Hinton et al. wrote the
# following:
# "The gradient flows through EM algorithm. We do not use stop gradient. A
# routing of 3 is like a 3 layer network where the weights of layers are
# shared."
# https://openreview.net/forum?id=HJWLfGWRb¬eId=S1eo2P1I3Q
return rr