-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvideo_stream.py
299 lines (245 loc) · 9.7 KB
/
video_stream.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
import os
import shutil
import cv2
import imutils
import numpy as np
from face_compare.face_compare import FaceMatch
from face_detect.face_detector import FaceDetector
from filterpy.kalman import KalmanFilter
from numba import jit
from sklearn.utils.linear_assignment_ import linear_assignment
import warnings
warnings.filterwarnings("ignore", category=DeprecationWarning)
@jit
def iou(bb_test, bb_gt):
xx1 = np.maximum(bb_test[0], bb_gt[0])
yy1 = np.maximum(bb_test[1], bb_gt[1])
xx2 = np.minimum(bb_test[2], bb_gt[2])
yy2 = np.minimum(bb_test[3], bb_gt[3])
w = np.maximum(0., xx2 - xx1)
h = np.maximum(0., yy2 - yy1)
wh = w * h
o = wh / ((bb_test[2] - bb_test[0]) * (bb_test[3] - bb_test[1])
+ (bb_gt[2] - bb_gt[0]) * (bb_gt[3] - bb_gt[1]) - wh)
return o
def convert_bbox_to_z(bbox):
"""
Takes a bounding box in the form [x1,y1,x2,y2] and returns z in the form
[x,y,s,r] where x,y is the centre of the box and s is the scale/area and r is
the aspect ratio
"""
w = bbox[2] - bbox[0]
h = bbox[3] - bbox[1]
x = bbox[0] + w / 2.
y = bbox[1] + h / 2.
s = w * h # scale is just area
r = w / float(h)
return np.array([x, y, s, r]).reshape((4, 1))
def convert_x_to_bbox(x, score=None):
"""
Takes a bounding box in the centre form [x,y,s,r] and returns it in the form
[x1,y1,x2,y2] where x1,y1 is the top left and x2,y2 is the bottom right
"""
w = np.sqrt(x[2] * x[3])
h = x[2] / w
if score == None:
return np.array([x[0] - w / 2., x[1] - h / 2., x[0] + w / 2., x[1] + h / 2.]).reshape((1, 4))
else:
return np.array([x[0] - w / 2., x[1] - h / 2., x[0] + w / 2., x[1] + h / 2., score]).reshape((1, 5))
class KalmanBoxTracker(object):
"""
This class represents the internel state of individual tracked objects observed as bbox.
"""
count = 0
def __init__(self, bbox):
"""
Initialises a tracker using initial bounding box.
"""
# define constant velocity model
self.kf = KalmanFilter(dim_x=7, dim_z=4)
self.kf.F = np.array(
[[1, 0, 0, 0, 1, 0, 0], [0, 1, 0, 0, 0, 1, 0], [0, 0, 1, 0, 0, 0, 1], [0, 0, 0, 1, 0, 0, 0],
[0, 0, 0, 0, 1, 0, 0], [0, 0, 0, 0, 0, 1, 0], [0, 0, 0, 0, 0, 0, 1]])
self.kf.H = np.array(
[[1, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [0, 0, 0, 1, 0, 0, 0]])
self.kf.R[2:, 2:] *= 10.
self.kf.P[4:, 4:] *= 1000. # give high uncertainty to the unobservable initial velocities
self.kf.P *= 10.
self.kf.Q[-1, -1] *= 0.01
self.kf.Q[4:, 4:] *= 0.01
self.kf.x[:4] = convert_bbox_to_z(bbox)
self.time_since_update = 0
self.id = KalmanBoxTracker.count
KalmanBoxTracker.count += 1
self.history = []
self.hits = 0
self.hit_streak = 0
self.age = 0
def update(self, bbox):
"""
Updates the state vector with observed bbox.
"""
self.time_since_update = 0
self.history = []
self.hits += 1
self.hit_streak += 1
self.kf.update(convert_bbox_to_z(bbox))
def predict(self):
"""
Advances the state vector and returns the predicted bounding box estimate.
"""
if (self.kf.x[6] + self.kf.x[2]) <= 0:
self.kf.x[6] *= 0.0
self.kf.predict()
self.age += 1
if self.time_since_update > 0:
self.hit_streak = 0
self.time_since_update += 1
self.history.append(convert_x_to_bbox(self.kf.x))
return self.history[-1]
def get_state(self):
"""
Returns the current bounding box estimate.
"""
return convert_x_to_bbox(self.kf.x)
def associate_detections_to_trackers(detections, trackers, iou_threshold=0.3):
"""
Assigns detections to tracked object (both represented as bounding boxes)
Returns 3 lists of matches, unmatched_detections and unmatched_trackers
"""
if len(trackers) == 0:
return np.empty((0, 2), dtype=int), np.arange(len(detections)), np.empty((0, 5), dtype=int)
iou_matrix = np.zeros((len(detections), len(trackers)), dtype=np.float32)
for d, det in enumerate(detections):
for t, trk in enumerate(trackers):
iou_matrix[d, t] = iou(det, trk)
matched_indices = linear_assignment(-iou_matrix)
unmatched_detections = []
for d, det in enumerate(detections):
if d not in matched_indices[:, 0]:
unmatched_detections.append(d)
unmatched_trackers = []
for t, trk in enumerate(trackers):
if t not in matched_indices[:, 1]:
unmatched_trackers.append(t)
# filter out matched with low IOU
matches = []
for m in matched_indices:
if iou_matrix[m[0], m[1]] < iou_threshold:
unmatched_detections.append(m[0])
unmatched_trackers.append(m[1])
else:
matches.append(m.reshape(1, 2))
if len(matches) == 0:
matches = np.empty((0, 2), dtype=int)
else:
matches = np.concatenate(matches, axis=0)
return matches, np.array(unmatched_detections), np.array(unmatched_trackers)
class VideoCamera:
def __init__(self, video=None, url=None):
global fd, fc
self.max_age = 15
self.min_hits = 3
self.trackers = []
self.frame = 0
self.ipcam = False
self.detected_face = 0
self.unique_face = 0
if url is None:
self.cap = cv2.VideoCapture(video)
if video is None:
self.ipcam = True
self.url = url
self.cap = cv2.VideoCapture(video)
fd = FaceDetector('face_detect/weight/model.pb')
fc = FaceMatch('face_compare/weight/vgg_face_weights.h5')
if os.path.isdir('./past_ppl'):
shutil.rmtree('./past_ppl')
os.mkdir('./past_ppl')
else:
os.mkdir('./past_ppl')
def __del__(self):
print("Deleted")
def find(self, img, box, trk):
print("Find called ###### ", trk.id)
ymin, xmin, ymax, xmax = int(box[0]), int(box[1]), int(box[2]), int(box[3])
cropped_img = img[ymin:ymax, xmin:xmax]
cv2.imwrite('./temporaryImg.jpg', cropped_img)
past_ppl = './past_ppl'
folders = os.listdir(past_ppl)
for folder in folders:
files = os.listdir(past_ppl + '/' + folder)
same = 0
diff = 0
numOfFiles = len(files)
for f in range(numOfFiles):
if f % 10 is not 0:
continue
ret = fc.comapre('./temporaryImg.jpg', './past_ppl/' + folder + '/' + str(f + 1) + '.jpg')
if ret:
same += 1
else:
diff += 1
p = 100 * float(same) / float(same + diff)
if p > 70:
person_no = len(files) + 1
cv2.imwrite(past_ppl + '/' + folder + '/' + str(person_no) + '.jpg', cropped_img)
print("before cahnge id ", trk.id)
trk.id = str(folder)
print("after cahnge id ", trk.id)
return
l = len(folders)
os.makedirs(past_ppl + '/' + str(l))
cv2.imwrite(past_ppl + '/' + str(l) + '/1.jpg', cropped_img)
trk.id = str(l)
print("New one ", trk.id)
return
def get_frame(self):
self.frame += 1
if self.ipcam:
self.cap = cv2.VideoCapture(self.url)
r, img = self.cap.read()
if r is False:
return None
img = imutils.resize(img, width=1200)
boxes, scores = fd(img)
trks = np.zeros((len(self.trackers), 5))
to_del = []
for t, trk in enumerate(trks):
pos = self.trackers[t].predict()[0]
trk[:] = [pos[0], pos[1], pos[2], pos[3], 0]
if np.any(np.isnan(pos)):
to_del.append(t)
trks = np.ma.compress_rows(np.ma.masked_invalid(trks))
for t in reversed(to_del):
self.trackers.pop(t)
matched, unmatched_dets, unmatched_trks = associate_detections_to_trackers(boxes, trks)
# tracked
for t, trk in enumerate(self.trackers):
if t not in unmatched_trks:
d = matched[np.where(matched[:, 1] == t)[0], 0]
trk.update(boxes[d, :][0])
ymin, xmin, ymax, xmax = boxes[d, :][0]
cv2.rectangle(img, (xmin, ymin), (xmax, ymax), (0, 255, 0), 2)
cv2.putText(img, str(trk.id), (int(xmin) - 10, int(ymin) - 10), cv2.FONT_HERSHEY_SIMPLEX, 1,
(255, 255, 255), 2)
cropped_img = img[int(ymin):int(ymax), int(xmin):int(xmax)]
person_no = len(os.listdir('past_ppl' + '/' + str(trk.id))) + 1
cv2.imwrite('past_ppl' + '/' + str(trk.id) + '/' + str(person_no) + '.jpg', cropped_img)
# new trackers
for i in unmatched_dets:
self.detected_face += 1
ymin, xmin, ymax, xmax = boxes[i, :]
cv2.rectangle(img, (xmin, ymin), (xmax, ymax), (0, 0, 255), 2)
trk = KalmanBoxTracker(boxes[i, :])
self.trackers.append(trk)
self.find(img, boxes[i, :], trk)
if trk.time_since_update > self.max_age:
self.trackers.pop(i)
self.unique_face = len(os.listdir('./past_ppl'))
cv2.putText(img, "Uinque face " + str(self.unique_face), (20, 20), cv2.FONT_HERSHEY_SIMPLEX, 1,
(0, 255, 255), 2)
cv2.putText(img, "Detect face " + str(self.detected_face), (20, 50), cv2.FONT_HERSHEY_SIMPLEX, 1,
(0, 255, 255), 2)
ret, jpeg = cv2.imencode('.jpg', img)
return jpeg.tobytes()