git clone https://github.com/shubhtuls/PerceptualSimilarity.git
- Download CUB-200-2011 images somewhere:
cd misc && wget http://www.vision.caltech.edu/visipedia-data/CUB-200-2011/CUB_200_2011.tgz && tar -xf CUB_200_2011.tgz
- Download CUB annotation mat files and pre-computed SfM outputs.
This should be saved in
misc/cachedir
directory:
wget https://sfo2.digitaloceanspaces.com/yun/misc/cachedir.tar.gz && tar -vzxf cachedir.tar.gz
You may skip this
We provide the computed SfM. If you want to compute them yourself, run via matlab:
cd preprocess/cub
main
you need to start visdom.server
before training
nohup python -m visdom.server & # remove nohup and `&` to see error
Change the name
to whatever you want to call. Also see main.py
to adjust
hyper-parameters (for eg. increase tex_loss_wt
and text_dt_loss_wt
if you
want better texture, increase texture resolution with tex_size
).
See nnutils/mesh_net.py
and nnutils/train_utils.py
for more model/training options.
python main.py --name=bird_net --display_port 8097
More settings:
# Stronger texture & higher resolution texture.
python main.py --name=bird_net_better_texture --tex_size=6 --tex_loss_wt 1. --tex_dt_loss_wt 1. --display_port 8088
# Stronger texture & higher resolution texture + higher res mesh.
python main.py --name=bird_net_hd --tex_size=6 --tex_loss_wt 1. --tex_dt_loss_wt 1. --subdivide 4 --display_port 8089
We provide evaluation code to compute the IOU curves in the paper.
Command below runs the model with different ablation settings.
Run it from one directory above the cmr
directory.
python misc/benchmark/run_evals.py --split val --name bird_net --num_train_epoch 500
Then, run
python misc/benchmark/plot_curvess.py --split val --name bird_net --num_train_epoch 500
in order to see the IOU curve.