Given an array of integers nums and an integer k, return the total number of continuous subarrays whose sum equals to k.
- We can find all subarrays and count subarrays with sum equal to k.
- TC: O(n^3)
- SC: O(1)
class Solution {
public:
int subarraySum(vector<int>& nums, int k)
{
int n = nums.size();
int cnt = 0;
for (int i = 0; i < n; i++) {
for (int j = i + 1; j <= n; j++) {
int sm = 0;
for (int k = i; k < j; k++)
sm += nums[k];
if (sm == k)
cnt++;
}
}
return cnt;
}
};
- Better Brute Force.
- In the 3rd loop we are finding the sum of the subarray.
- We can optimize 3rd loop by prefix sum.
- Store the prefix sum of array elements.
- While traversing array
if(prefix[j] - prefix[i]==k)
increment the count. - return the count.
- TC: O(n^2)
- SC: O(n)
class Solution {
public:
int subarraySum(vector<int>& nums, int k)
{
int n = nums.size();
// prefix sum
vector<int> prefix(n + 1, 0);
for (int i = 0; i < n; i++)
prefix[i + 1] = prefix[i] + nums[i];
int ans = 0;
for (int i = 0; i < n; i++) {
for (int j = i + 1; j <= n; j++) {
if (prefix[j] - prefix[i] == k)
ans++;
}
}
return ans;
}
};
- Instead of using prefix array to store the prefix sum, we can find the running sum.
- If sum=k increment the count.
- Return the count.
- TC: O(n^2)
- SC: O(1)
class Solution {
public:
int subarraySum(vector<int>& nums, int k)
{
int n = nums.size();
int ans = 0;
for (int i = 0; i < n; i++) {
int sum = 0;
for (int j = i; j < n; j++) {
sum += nums[j];
if (sum == k)
ans++;
}
}
return ans;
}
};
-
Below explanation is from LeetCode Discuss.
-
Consider the below example: array :
3 4 7 -2 2 1 4 2
presum :3 7 14 12 14 15 19 21
index :0 1 2 3 4 5 6 7
k =7
Map should look like :(0,1) , (3,1), (7,1), (14,2) , (12,1) , (15,1) , (19,1) , (21,1)
-
Consider
21(presum)
now what we do issum-k
that is21-7 = 14
. Now we will check our map if we go by just count++ logic we will just increment the count once and here is where we go wrong. -
When we search for
14
in presum array we find it on2
and4
index. The logic here is that14 + 7 = 21
so the array between indexes ->3
to7
(-2 2 1 4 2)
->5
to7
both have sum 7( 1 4 2)
The sum is still7
in this case because there are negative numbers that balance up for. So if we considercount++
we will have one count less as we will consider only array5
to7
but now we know that14
sum occured earlier too so even that needs to be added up somap.get(sum-k)
. -
Another way of understanding this is that if there is increase of
k
in the presum array we have found a new subarray so that is why we look forcurrentSum-k
. -
TC: O(n)
-
SC: O(n)
class Solution {
public:
int subarraySum(vector<int>& nums, int k)
{
int n = nums.size();
int sm = 0;
int ans = 0;
unordered_map<int, int> mp;
mp[0] = 1; // getting 0 sum is always possible
for (int i = 0; i < n; ++i) {
sm += nums[i];
if (mp.count(sm - k)) ans += mp[sm - k];
mp[sm]++;
}
return ans;
}
};