Given the root of a binary tree, return the maximum width of the given tree.
The maximum width of a tree is the maximum width among all levels.
The width of one level is defined as the length between the end-nodes (the leftmost and rightmost non-null nodes), where the null nodes between the end-nodes are also counted into the length calculation.
It is guaranteed that the answer will in the range of 32-bit signed integer.
class Solution {
public:
int widthOfBinaryTree(TreeNode* root)
{
if (!root) return 0;
unsigned int ans = 0;
queue<pair<TreeNode*, int>> q;
q.push({ root, 0 });
// bfs ( level order traversal )
while (!q.empty()) {
int size = q.size();
int min = q.front().second;
unsigned int first, last;
for (int i = 0; i < size; i++) {
unsigned int curr = q.front().second - min;
TreeNode* node = q.front().first;
q.pop();
if (i == 0)
first = curr;
if (i == size - 1)
last = curr;
// pushing left child subtree
if (node->left)
q.push({ node->left, 2 * curr + 1 });
// pushing right child subtree
if (node->right)
q.push({ node->right, 2 * curr + 2 });
}
ans = max(ans, last - first + 1);
}
return ans;
}
};
- Int will give integer overflow, so we use unsigned int.
class Solution {
private:
unsigned int dfs(TreeNode* root, unsigned int level, unsigned int order, vector<unsigned int>& start, vector<unsigned int>& end)
{
if (root == NULL) {
return 0;
}
int n = start.size();
if (n == level) {
start.push_back(order);
end.push_back(order);
} else {
end[level] = order;
}
int curr = end[level] - start[level] + 1;
int left = dfs(root->left, level + 1, 2 * order, start, end);
int right = dfs(root->right, level + 1, 2 * order + 1, start, end);
return max({ curr, left, right });
}
public:
int widthOfBinaryTree(TreeNode* root)
{
vector<unsigned int> start;
vector<unsigned int> end;
return int(dfs(root, 0, 1, start, end));
}
};
- codestudio problem is simple, just use level order traversal and store max width of level.