-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmodels.py
201 lines (143 loc) · 7.68 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
import json
import torch
import torch.nn as nn
import torch.nn.functional as F
from transformers import AutoTokenizer, AutoModel
from sentence_transformers import SentenceTransformer, util
#import faiss
class FaissQuery():
def __init__(self, index=None):
self.index = index
def build(self, X=None):
d = X.shape[1]
self.index = faiss.IndexFlatIP(d)
self.index.train(X)
self.index.add(X)
@staticmethod
def load(path):
return FaissQuery(faiss.read_index(path))
def save(self, path):
faiss.write_index(self.index, path)
def query(self, query_vector=None, n_query=5):
distances, indices = self.index.search(query_vector, n_query)
return indices[0]
class RetrievalModel():
def __init__(self, model_path, data=None, faiss_path=None, embeddings_path=None):
self.device = torch.device("cuda:2") if torch.cuda.is_available() else torch.device("cpu")
self.model = SentenceTransformer(model_path, device=self.device)
self.data = data
self.sentence_embeddings = None
self.faiss_model = None
if faiss_path != None:
self.faiss_model = FaissQuery.load(faiss_path)
if embeddings_path != None:
self.sentence_embeddings = self.load_sentence_embeddings(embeddings_path).cpu().numpy()
def load_sentence_embeddings(self, embeddings_path):
return torch.load(embeddings_path, map_location=self.device)
def get_relevant_sentences(self, question, k=32):
responses = []
scores, indices = self.query_by_sbert(question, k)
for i in indices:
responses.append(self.data[i])
return scores, responses
def query_by_faiss(self, question, k):
question_embedding = self.model.encode([question])
indices = self.faiss_model.query(question_embedding, n_query=k)
return indices
def query_by_sbert(self, question, k):
#question_embedding = self.model.encode(question, convert_to_tensor=True)
question_embedding = self.model.encode(question)
cos_scores = util.pytorch_cos_sim(question_embedding, self.sentence_embeddings)[0]
top_results = torch.topk(cos_scores, k=k)
scores, indices = list(top_results[0].cpu().numpy()), list(top_results[1].cpu().numpy())
return scores, indices
def build_tensor_from_data(self):
return self.model.encode(self.data)
class PhoBertModel(nn.Module):
def __init__(self, phoBert_path):
super(PhoBertModel, self).__init__()
self.phoBert = AutoModel.from_pretrained(phoBert_path)
self.linear_1 = nn.Linear(768, 100)
self.linear_2 = nn.Linear(100, 2)
def forward(self, input_ids, attention_mask):
output = self.phoBert(input_ids, attention_mask)[1]
x = self.linear_1(output)
x = self.linear_2(x)
return x
class QnA(object):
def __init__(self, phoBert_path, finetuned_PhoBert_path):
self.device = torch.device("cuda:2") if torch.cuda.is_available() else torch.device("cpu")
print("Loading PhoBert ....")
self.qna_model = PhoBertModel(phoBert_path)
self.qna_model.load_state_dict(torch.load(finetuned_PhoBert_path, map_location=self.device))
self.qna_model.to(self.device)
print("Loading BPE ...")
self.bpe = AutoTokenizer.from_pretrained(phoBert_path)
self.MAX_LEN = 256
def find_answer(self, question, sentences, topk=3):
questions = [question] * len(sentences)
input_datas = list(zip(questions, sentences))
scores = torch.tensor([], device=self.device)
dataloader = torch.utils.data.DataLoader(input_datas, batch_size=4, shuffle=False)
for input_data in dataloader:
batch_input = self.bpe.batch_encode_plus(list(zip(input_data[0], input_data[1])), padding=True, truncation=True, max_length=self.MAX_LEN, return_tensors='pt')
pred = self.qna_model.forward(batch_input['input_ids'].to(self.device), batch_input['attention_mask'].to(self.device))
results = torch.nn.functional.softmax(pred, dim=1)
score, pred_labels = results.max(1)
for i, label in enumerate(pred_labels):
if label == 0:
score[i] = 1 - score[i]
scores = torch.cat((scores, score), dim=0)
scores = scores.tolist()
responses = list(sorted(zip(sentences, scores), key=lambda x:x[1], reverse=True))
if topk > len(responses):
topk = len(responses)
top_responses = []
for i in range(topk):
top_responses.append({'answer': responses[i][0],
'score': str(responses[i][1])})
return top_responses
class QuestionAnsweringModel():
def __init__(self, args):
self.device = torch.device("cuda:2") if torch.cuda.is_available() else torch.device("cpu")
print("Loading corpus ...")
with open(args.corpus_path, 'r', encoding='utf-8') as fin:
self.data = json.loads(fin.read())
print("Loading PhoBert ....")
self.qna_model = PhoBertModel(args.phoBert_path)
self.qna_model.load_state_dict(torch.load(args.finetuned_PhoBert_path, map_location=self.device))
self.qna_model.to(self.device)
self.qna_model.eval()
print("Loading SentenceBert ....")
self.ir_model = RetrievalModel(args.ir_model_path, self.data, args.faiss_path, args.embeddings_path)
print("Loading BPE ...")
self.bpe = AutoTokenizer.from_pretrained(args.phoBert_path)
self.MAX_LEN = 256
print("Successfully loading.")
def get_top_answers(self, question, topk=10):
relevant_scores, answers = self.ir_model.get_relevant_sentences(question, k=100)
questions = [question] * len(answers)
input_datas = list(zip(questions, answers))
scores = torch.tensor([], device=self.device)
dataloader = torch.utils.data.DataLoader(input_datas, batch_size=4, shuffle=False)
with torch.no_grad():
for input_data in dataloader:
batch_input = self.bpe.batch_encode_plus(list(zip(input_data[0], input_data[1])), padding=True, truncation=True, max_length=self.MAX_LEN, return_tensors='pt')
pred = self.qna_model.forward(batch_input['input_ids'].to(self.device), batch_input['attention_mask'].to(self.device))
results = torch.nn.functional.softmax(pred, dim=1)
score, pred_labels = results.max(1)
for i, label in enumerate(pred_labels):
if label == 0:
score[i] = 1 - score[i]
scores = torch.cat((scores, score), dim=0)
if any([check for check in ['vì sao', 'tại sao', 'nguyên nhân', 'lý do', 'hệ quả', 'hậu quả', 'dẫn đến', 'gây ra', 'kết quả', 'mang lại', 'sẽ xảy ra'] if check in question.lower()]):
scores = scores * torch.tensor(list(relevant_scores), device=self.device)
scores = scores.tolist()
responses = list(sorted(zip(answers, scores), key=lambda x:x[1], reverse=True))
if topk > len(responses):
topk = len(responses)
top_responses = []
for i in range(topk):
top_responses.append({'answer': responses[i][0],
'score': str(responses[i][1])})
return top_responses