-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathRubiks.hs
384 lines (330 loc) · 14 KB
/
Rubiks.hs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
{-# LANGUAGE KindSignatures #-}
{-# LANGUAGE PatternSynonyms #-}
{-# LANGUAGE LexicalNegation #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE ImportQualifiedPost #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# OPTIONS_GHC -Wno-unrecognised-pragmas #-}
{-# HLINT ignore "Avoid lambda using `infix`" #-}
{-# HLINT ignore "Use <$>" #-}
module Main where
import Data.Coerce (coerce)
import Data.List qualified as List
import Data.Map qualified as Map
import Data.Set qualified as Set
import Data.Tuple.Optics qualified as Optics
import Optics.Core qualified as Optics
import String.ANSI qualified as ANSI
import GHC.Stack (HasCallStack)
-- TODO later: optimize!
-- https://en.wikipedia.org/wiki/Optimal_solutions_for_the_Rubik%27s_Cube#Kociemba's_algorithm
{- How to talk about a rubik's cube.
-
- A cube is comprised of cubies. A cube itself has no orientation, but
- cubies do. They also have position and stickers. One, two, or three
- stickers.
-
- Orientation means pointing a certain direction. Orientation is relative to an
- observer, meaning that it is possible to rotate every cubie simultaneously.
-
- Positions on a cube start in the center.
-
- Given this standard view of a cube,
-
- +----------+
- | 0 1 2 |
- | 3 4 5 |
- | 6 7 8 |
- +----------+----------+----------+----------+
- | 9 10 11 | 18 19 20 | 27 28 29 | 45 46 47 |
- | 12 13 14 | 21 22 23 | 30 31 32 | 48 49 50 |
- | 15 16 17 | 24 25 26 | 33 34 35 | 51 52 53 |
- +----------+----------+----------+----------+
- | 36 37 38 |
- | 39 40 41 |
- | 42 43 44 |
- +----------+
-
- stickers 0, 9, and 57 are part of the cubie at position (-1,1,-1).
-
- A cube also has faces and slices, which are the collection of stickers
- sharing a particular X, Y, or Z coordinate. Rotating a face or slice means
- rotating and translating the cubies the stickers of the slice are found on.
-
- Actually, cubies don't have orientation, either. Stickers do. Same with
- position. It just so happens that one, two, or three stickers can share the
- same position. The only problem with this formulation is that it might be
- hard to generate valid arbitrary scrambles from arbitrary stickers. But
- that can be tackled by smart constructors, I'm sure.
-}
-- R is +x
-- U is +y
-- F is +z
data Cube = Cube
{ cubeSize :: Word
, cubeStickers :: [Sticker]
, cubeIndices :: [CubieIndex]
} deriving Show
data Sticker = Sticker Color Position Orientation deriving (Show, Eq, Ord)
data CubieIndex = CubieIndex Position Word deriving (Show, Eq, Ord)
newtype Position = Position (Int,Int,Int) deriving (Show, Eq, Ord)
newtype Orientation = Orientation (Int,Int,Int) deriving (Show, Eq, Ord)
pattern FaceU, FaceD, FaceF, FaceB, FaceL, FaceR :: Orientation
pattern FaceR = Orientation (1, 0, 0)
pattern FaceL = Orientation (-1, 0, 0)
pattern FaceU = Orientation (0, 1, 0)
pattern FaceD = Orientation (0, -1, 0)
pattern FaceF = Orientation (0, 0, 1)
pattern FaceB = Orientation (0, 0, -1)
data Color = Red | Green | Blue | Yellow | Orange | White deriving (Show, Eq, Ord)
solved3x3 :: Cube
solved3x3 = solvedNxN 3
cubiePositions :: Word -> [Position]
cubiePositions size =
let w = fromIntegral size `div` 2
rng = [-w..w] List.\\ [0 | even size]
-- Center postions have only one nonzero element
isCenter = (<= 1) . length . filter (/= 0)
in [Position (x,y,z) | x <- rng, y <- rng, z <- rng, not $ isCenter [x,y,z]]
solvedNxN :: Word -> Cube
solvedNxN size = Cube size colorList indexList where
w = fromIntegral size `div` 2
rng = [-w..w] List.\\ [0|even size]
right = [Sticker Green (Position (w, y, z)) FaceR | y <- rng, z <- rng ]
left = [Sticker Blue (Position (-w, y, z)) FaceL | y <- rng, z <- rng ]
up = [Sticker White (Position (x, w, z)) FaceU | x <- rng, z <- rng ]
down = [Sticker Yellow (Position (x, -w, z)) FaceD | x <- rng, z <- rng ]
front = [Sticker Orange (Position (x, y, w)) FaceF | x <- rng, y <- rng ]
back = [Sticker Red (Position (x, y, -w)) FaceB | x <- rng, y <- rng ]
colorList = front <> back <> left <> right <> up <> down
indexList = zipWith CubieIndex (cubiePositions size) [1..]
ansi :: Color -> String
ansi Red = ANSI.redBg " "
ansi Green = ANSI.greenBg " "
ansi Blue = ANSI.blueBg " "
ansi Yellow = ANSI.rgbBg 255 255 0 " "
ansi Orange = ANSI.rgbBg 255 165 0 " "
ansi White = ANSI.rgbBg 255 255 255 " "
prettySticker :: Sticker -> String
prettySticker (Sticker c _ _) = ansi c
-- | Given all stickers on a face, put them in a map of locations.
faceMap :: [Sticker] -> Map.Map Position Sticker
faceMap = Map.fromListWithKey spotError . map (\s@(Sticker _ p _) -> (p,s))
where
spotError k _ _ = error $ "Duplicate sticker at " <> show k
prettyCube :: HasCallStack => Cube -> [Char]
prettyCube (Cube size stickers idxs) = concat
[ up
, lfrb
, down
, indices
]
where
indices = show $ map i (List.sortOn p idxs)
where p (CubieIndex p' _) = p'
i (CubieIndex _ i') = i'
uStickers = faceMap $ filter (\(Sticker _ _ o) -> o == FaceU) stickers
dStickers = faceMap $ filter (\(Sticker _ _ o) -> o == FaceD) stickers
lStickers = faceMap $ filter (\(Sticker _ _ o) -> o == FaceL) stickers
rStickers = faceMap $ filter (\(Sticker _ _ o) -> o == FaceR) stickers
fStickers = faceMap $ filter (\(Sticker _ _ o) -> o == FaceF) stickers
bStickers = faceMap $ filter (\(Sticker _ _ o) -> o == FaceB) stickers
w = fromIntegral size `div` 2
pos = [-w..w] List.\\ [0|even size]
neg = reverse pos
spaces = replicate (fromIntegral size) ' '
space x = spaces <> x
mkPos a b c = {-traceShowId $-} Position (a,b,c)
-- pos x, pos z
up = unlines $ map (space . (\z -> concatMap (\x -> prettySticker $ uStickers Map.! mkPos x w z) pos)) pos
-- Mirrored. front row (z = -w) is shown first.
down = unlines $ map (space . (\z -> concatMap (\x -> prettySticker $ dStickers Map.! mkPos x -w z ) pos)) neg
-- positive z, negative y
left = map (\y -> concatMap (\z -> prettySticker $ lStickers Map.! mkPos -w y z) pos) neg
-- neg z, neg y
right = map (\y -> concatMap (\z -> prettySticker $ rStickers Map.! mkPos w y z) neg) neg
-- positive x, neg y
front = map (\y -> concatMap (\x -> prettySticker $ fStickers Map.! mkPos x y w) pos) neg
-- neg x, neg y
back = map (\y -> concatMap (\x -> prettySticker $ bStickers Map.! mkPos x y -w) neg) neg
lf = zipWith (<>) left front
lfr = zipWith (<>) lf right
lfrb = unlines $ zipWith (<>) lfr back
{- Modifying a Rubik's cube
-
- Start with R as an example. This rotates the R face clockwise. It affects
- stickers with position x = 1.
-
- Rotation: All stickers rotate around the x axis. FaceB becomes FaceF and so
- on.
-
- Translation: a face at (1, 1, 1) moves to (1, 0, -1).
-
- Oh yeah, I remember now: it's sine and cosine.
-}
-- Rotating a sticker means rotating its position and orientation. Rotation
-- happens on an axis and has a magnitude.
data Axis = Rx | Uy | Fz deriving (Show)
-- Default math uses the following formula:
--
-- x' = x * cos phi - y * sin phi
-- y' = x * sin phi + y * cos phi
--
-- That's fine, but we have to negate phi because for a cube, a positive turn is
-- clockwise, not ccw. cos is symmetric around phi so it's just sine that needs
-- to change.
rotate :: Axis -> Int -> (Int,Int,Int) -> (Int,Int,Int)
rotate Rx = rotate' Optics._2 Optics._3
rotate Uy = rotate' Optics._3 Optics._1
rotate Fz = rotate' Optics._1 Optics._2
rotate' ax1 ax2 n coord =
let val = Optics.view ax1 coord
val2 = Optics.view ax2 coord
val' = val * cosine n - val2 * sine n
val2' = val * sine n + val2 * cosine n
in Optics.set ax1 val' $ Optics.set ax2 val2' coord
-- Multiples of pi/2.
-- Sine is inverted to take CW as positive into account.
sine, cosine :: Int -> Int
sine 0 = 0
sine 1 = -1
sine 2 = 0
sine 3 = 1
sine n = sine (n `mod` 4)
cosine 0 = 1
cosine 1 = 0
cosine 2 = -1
cosine 3 = 0
cosine n = cosine (n `mod` 4)
-- Now we can actually rotate a sticker.
rotateSticker :: Axis -> Int -> Sticker -> Sticker
rotateSticker ax mag (Sticker c p o) = Sticker c (coerce rotate ax mag p) (coerce rotate ax mag o)
-- And a CubieIndex
rotateCubieIndex :: Axis -> Int -> CubieIndex -> CubieIndex
rotateCubieIndex ax mag (CubieIndex p i) = CubieIndex (coerce rotate ax mag p) i
-- Having done that, we want to rotate a whole slice. A slice is all
-- stickers/cubies at a certain position along one axis.
data Slice = Slice Axis Int
rotateSlice (Slice ax n) mag (Cube size stickers indices) = Cube size stickers' indices'
where
rotStick = rotateSticker ax mag
rotCubIdx = rotateCubieIndex ax mag
stickers' =
map (\s@(Sticker _ (Position p) _) ->
if Optics.view (axis ax) p == n then rotStick s else s)
stickers
indices' =
map (\ci@(CubieIndex (Position p) _) ->
if Optics.view (axis ax) p == n then rotCubIdx ci else ci)
indices
axis Rx = Optics._1
axis Uy = Optics._2
axis Fz = Optics._3
data Move = R | L | U | D | F | B
| R' | L' | U' | D' | F' | B'
move :: Move -> Cube -> Cube
move R = rotateSlice (Slice Rx 1) 1
move L = rotateSlice (Slice Rx -1) -1
move U = rotateSlice (Slice Uy 1) 1
move D = rotateSlice (Slice Uy -1) -1
move F = rotateSlice (Slice Fz 1) 1
move B = rotateSlice (Slice Fz -1) -1
move R' = rotateSlice (Slice Rx 1) -1
move L' = rotateSlice (Slice Rx -1) 1
move U' = rotateSlice (Slice Uy 1) -1
move D' = rotateSlice (Slice Uy -1) 1
move F' = rotateSlice (Slice Fz 1) -1
move B' = rotateSlice (Slice Fz -1) 1
moves :: [Move] -> Cube -> Cube
moves = foldr (flip (.) . move) id
-- Sanity check: The list of cubie indices corresponding to the same list of
-- stickers should always be the same. So let's find a cubie based on colors so
-- we can compare a cube at different states of scramble to double check the
-- above functions.
findCubie :: [Color] -> Cube -> [CubieIndex]
findCubie colors (Cube _ stickers idx) =
let posMap =
Map.fromListWith (<>)
(map (\(Sticker c p _) -> (p, Set.singleton c)) stickers)
positions = Map.keys (Map.filter (== Set.fromList colors) posMap)
in filter (\(CubieIndex p _) -> p `elem` positions) idx
crossProduct :: (Int,Int,Int) -> (Int,Int,Int) -> (Int,Int,Int)
crossProduct (a_x, a_y, a_z) (b_x, b_y, b_z) = (a_y*b_z - a_z*b_y, a_z*b_x - a_x*b_z, a_x*b_y - a_y*b_x)
-- | The parity of a corner.
--
-- Clockwise = 1, Counterclockwise = 2, None = 0
--
-- Find orientation with the cross product.
--
-- 1. Find the orientation O of the white or yellow sticker of a cubie at position P
-- 2. Calculate the cross product C of O × P
-- 3. If C_y is zero, parity is None
-- If C_y is the the same sign as P_y, parity is Clockwise.
-- Otherwise parity is Counterclockwise.
cornerParity :: Cube -> Position -> Int
cornerParity (Cube _ stickers _) p@(Position (_,p_y,_)) =
let Sticker _ _ o = head $ filter (\(Sticker c p' _) -> c `elem` [Yellow, White] && p' == p) stickers
(_,c_y,_) = crossProduct (coerce o) (coerce p)
in case signum c_y of
0 -> 0
s -> if s == signum p_y then 2 else 1
totalCornerParity :: Cube -> Int
totalCornerParity c@(Cube size _ _) = sum $
let w = fromIntegral size `div` 2
a = [-w,w]
in [cornerParity c (Position (x,y,z)) | x <- a, y <- a, z <- a]
-- Next up is permutation parity.
--
-- First, calculate listPerms.
listPerms [] = 0
listPerms (x:xs) = elemPerms x xs + listPerms xs where
elemPerms z = sum . map (\y -> if z < y then 0 else 1)
-- Now that we've added cubie indices everywhere, and we've made a solved cube
-- have indices = [1..] by construction, *and* we've made an Ord instance for
-- CubieIndex that matches on index first, it's as easy as
permutationParity :: Cube -> Int
permutationParity = listPerms . cubeIndices
-- But this is fragile! If I cared, it would be better to be explicit about the
-- Ord instance and about comparing to a solved cube.
main = do
putStrLn "Rotating centers on their axis doesn't change them:"
putStr " Rx: "
print $ all ((== (1,0,0)) . (\mag -> rotate Rx mag (1,0,0))) [-1..2]
putStr " Uy: "
print $ all ((== (0,1,0)) . (\mag -> rotate Uy mag (0,1,0))) [-1..2]
putStr " Fz: "
print $ all ((== (0,0,1)) . (\mag -> rotate Fz mag (0,0,1))) [-1..2]
putStr "rotate Rx 1 (1,1,0) == (1,0,-1): "
print $ rotate Rx 1 (1,1,0) == (1,0,-1)
putStr "rotate Rx 2 (1,1,0) == (1,-1,0): "
print $ rotate Rx 2 (1,1,0) == (1,-1,0)
putStr "rotate Rx -1 (1,1,0) == (1,0,1): "
print $ rotate Rx -1 (1,1,0) == (1,0,1)
putStr "rotate Uy 1 (1,1,0) == (0,1,1): "
print $ rotate Uy 1 (1,1,0) == (0,1,1)
putStr "rotate Uy 2 (1,1,0) == (-1,1,0): "
print $ rotate Uy 2 (1,1,0) == (-1,1,0)
putStr "rotate Uy -1 (1,1,0) == (0,1,-1): "
print $ rotate Uy -1 (1,1,0) == (0,1,-1)
putStr "rotate Fz 1 (1,1,0) == (1,-1,0): "
putStr . show $ rotate Fz 1 (1,1,0)
putStr ": "
print $ rotate Fz 1 (1,1,0) == (1,-1,0)
putStr "rotate Fz 2 (1,1,0) == (-1,-1,0): "
putStr . show $ rotate Fz 2 (-1,-1,0)
putStr ": "
print $ rotate Fz 2 (1,1,0) == (-1,-1,0)
putStr "rotate Fz -1 (1,1,0) == (-1,1,0): "
putStr . show $ rotate Fz 3 (1,1,0)
putStr ": "
print $ rotate Fz -1 (1,1,0) == (-1,1,0)
putStr "Null rotation on any axis causes no change: "
let positions = filter (/= (0,0,0)) [(x,y,z) | x <- [-1..1], y <- [-1..1], z <- [-1..1]]
print $ and [ c1 == c2 | c1 <- positions, ax <- [Rx,Uy,Fz], let c2 = rotate ax 0 c1 ]
putStrLn $ prettyCube $ move R' $ move D' $ move B' $ move B $ move D $ move R solved3x3
putStr "R rotation permutates WGO corner clockwise: "
print $ cornerParity (move R solved3x3) (Position (1,1,-1)) == 1
putStr "R rotation permutates YGO corner counterclockwise: "
print $ cornerParity (move R solved3x3) (Position (1,1,1)) == 2
putStr "totalCornerPerm (moves [R,U,L] solved3x3) == 9: "
print $ totalCornerParity (moves [R,U,L] solved3x3) == 9