-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathensemble_masks_wbf.py
130 lines (111 loc) · 4.44 KB
/
ensemble_masks_wbf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
import warnings
import numpy as np
from numba import jit
@jit(nopython=True)
def bb_intersection_over_union(A, B) -> float:
xA = max(A[0], B[0])
yA = max(A[1], B[1])
xB = min(A[2], B[2])
yB = min(A[3], B[3])
# compute the area of intersection rectangle
interArea = max(0, xB - xA) * max(0, yB - yA)
if interArea == 0:
return 0.0
# compute the area of both the prediction and ground-truth rectangles
boxAArea = (A[2] - A[0]) * (A[3] - A[1])
boxBArea = (B[2] - B[0]) * (B[3] - B[1])
iou = interArea / float(boxAArea + boxBArea - interArea)
return iou
def get_weighted_mask(masks, scores, inmodels, conf_type):
mask = np.zeros(masks[0].shape, dtype=np.float32)
conf = 0
conf_list = []
for m, s, im in zip(masks, scores, inmodels):
if conf_type == 'model_weight2':
mask += s * im * m
conf += s * im
else:
mask += s * m
conf += s
conf_list.append(s)
score = np.max(conf_list)
mask = mask / conf
return mask, score, conf_list
def get_weighted_box(boxes, scores, inmodels, conf_type):
box = np.zeros(4, dtype=np.float32)
conf = 0
conf_list = []
for b, s, im in zip(boxes, scores, inmodels):
if conf_type == 'model_weight2':
box += s * im * b
conf += s * im
else:
box += s * b
conf += s
conf_list.append(s)
score = np.max(conf_list)
box = box / conf
return box, score
def find_matching_box(boxes_list, new_box, match_iou):
best_iou = match_iou
best_index = -1
for i in range(len(boxes_list)):
box = boxes_list[i]
iou = bb_intersection_over_union(box, new_box)
if iou > best_iou:
best_index = i
best_iou = iou
return best_index, best_iou
def weighted_masks_fusion(masks, boxes, scores, models, iou_thr=0.7, skip_mask_thr=0.0,
conf_type='max_weight', soft_weight=5, thresh_type=None, model_weights=1,
num_thresh=4, num_models=5):
masks = masks[scores > skip_mask_thr]
boxes = boxes[scores > skip_mask_thr]
models = models[scores > skip_mask_thr]
scores = scores[scores > skip_mask_thr]
new_masks = []
new_boxes = []
new_scores = []
inmodels = []
weighted_boxes = []
weighted_scores = []
# Clusterize boxes
for i in range(len(masks)):
index, best_iou = find_matching_box(weighted_boxes, boxes[i], iou_thr)
if index != -1:
new_masks[index].append(masks[i])
new_boxes[index].append(boxes[i])
new_scores[index].append(scores[i])
inmodels[index].append(models[i])
weighted_boxes[index], weighted_scores[index] = get_weighted_box(new_boxes[index], new_scores[index], inmodels[index], conf_type)
else:
new_masks.append([masks[i]])
new_boxes.append([boxes[i].copy()])
new_scores.append([scores[i].copy()])
inmodels.append([models[i]])
weighted_boxes.append(boxes[i].copy())
weighted_scores.append(scores[i].copy())
ens_masks = []
ens_scores = []
ens_boxes = []
for nmasks, nscores, wbox, inms in zip(new_masks, new_scores, weighted_boxes, inmodels):
mask, score, conf_list = get_weighted_mask(nmasks, nscores, inms, conf_type)
if thresh_type == 'num_thresh':
if len(conf_list) >= num_thresh:
ens_masks.append(mask)
ens_boxes.append(wbox)
else:
continue
else:
ens_masks.append(mask)
ens_boxes.append(wbox)
if conf_type == 'max_weight':
ens_scores.append(score * min(len(conf_list), num_models) / num_models)
elif conf_type == 'max':
ens_scores.append(score)
elif conf_type == 'soft_weight':
ens_scores.append(score * (min(len(conf_list), num_models) + soft_weight) / (soft_weight + num_models))
elif conf_type == 'model_weight' or conf_type == 'model_weight2':
this_weights = [model_weights[i] for i in inms]
ens_scores.append(score * (min(np.sum(this_weights), np.sum(model_weights)) + soft_weight) / (soft_weight + np.sum(model_weights)))
return ens_masks, ens_scores, ens_boxes